CC 2400-1

WORKS FOR YOU:

목 차

Specifications
사양 5
Superlift configurations
수퍼리프트 조합 8
Specifications
사양 9
Erection / lowering 세우기 / 내리기 11
Boom combinations
붐 조합 12
Main boom (SH, SH/LH)
메인 붐 (SH, SH/LH) 14
Main boom with SL (SSL, SSL/LSL)
수퍼리프트와 메인붐 (SSL, SSL/LSL) 18
Fixed fly jib (SH+LF2, SH/LH+LF2)
고정 플라이 짚 (SH+LF2, SH/LH+LF2) 21
Fixed fly jib with SL
수퍼리프트와 고정 플라이 짚 (SSL+LF2, SSL/LSL+LF2) 28
Luffing fly jib (SW)
러핑 플라이 짚 (SW) 39
Luffing fly jib with SL (SWSL)
수퍼리프트와 러핑 플라이 짚 (SWSL) 48
Technical description
기술적 설명 66
Track
Coun랙
카운터웨이트 + 센트럴 발라스트 (ZB)
Superlift counterweight
수퍼리프트 카운터웨이트

- Maximum lifting capacities throughout all working ranges
- Maximum load moment 5168 tm
- Variable Superlift radius
- Variable offset of main boom for configuration SW and SWSL
\rightarrow Innovative IC-1 crane control system with touchscreen

모든 작업 반경에서 최대 인양 능력

- 최대 로드 모먼트 5168 tm
> 가변형 수퍼리프트 반경
- SW와 SWSL 조합에 대한 메인 붐의 가변형 오프셋
- 터치스크린으로 된 혁신적인 IC-1 크레인 컨트롤 시스템

Working speeds (infinitely variable) - 작업 속도 (무한 가변)

Mechanism 기계장치		$\begin{aligned} & \text { Speeds }^{11} \\ & \text { 속도 }{ }^{11} \end{aligned}$	Single line pull 단선 인양	Length of hoist rope 호이스트 로프 길이
Hoist I 호이스트 \|	(H1)	$\max .150 \mathrm{~m} / \mathrm{min}$	$150 \mathrm{kN} / 133 \mathrm{kN}$ 2)	1020 m
Hoist II 호이스트 II	(H2)	$\max .130 \mathrm{~m} / \mathrm{min}$	$150 \mathrm{kN} / 141 \mathrm{kN}$ 2)	700 m
Boom derricking 붐 데릭킹	(W2)	max. $139 \mathrm{~m} / \mathrm{min}$		
Boom hoist 붐 호이스트	(E)	max. $54 \mathrm{~m} / \mathrm{min}$		
Jib luffing 짚 러핑	(W1)	max. $110 \mathrm{~m} / \mathrm{min}$		
Slewing (rpm) 선회 (rpm)	1,4			
1) top layer • 상위층				

Carrier performance - 캐리어 성능

Travel speed

주행 속도

SPECIFICATIONS

사 양

Double hook block •더블 훅 블록

Type 타입	Possible load 가능 하중	Number of sheaves 활차 개수	Number of lines 로프 가닥 수	Weight 무게	„D"

* Capacities > 316 t : Heavy-duty head HA $400 \mathrm{t}+$ sheave assembly 400 t is required 인양능력 $>316 \mathrm{t}$: 헤비-듀티 $\mathrm{HA} 400 \mathrm{t}+$ 쉬브 조립체 400 t 이 필요

Hook block •훅 블록

Type 타입	Possible load 가능 하중	Number of sheaves 활차 개수	Number of lines 로프 가닥 수	Weight 무게	„D"
100	100 t	3	7	$2,0-3,5 \mathrm{t}$	$3,70 \mathrm{~m}$
50	45 t	1	3	$1,7 \mathrm{t}$	$3,70 \mathrm{~m}$
15	15 t	Single line hook	싱글라인 훅	1	$0,9 \mathrm{t}$

Basic crane dimensions - 기본 크레인 치수

SUPERLIFT CONFIGURATIONS

Standard-SL \qquad 11, 13, 15 m 스탠다드-수퍼리프트

Vario-SL 9-15 m 바리오-수퍼리프트

Tele-SL
텔레-수퍼리프트

Weights • 중량

Total weight incl. 100 t counterweight, 24 m boom and hook block 100 t 카운터웨이트, 24 m 붐과 훅 블록을 포함 한 총 중량 235 t
Superstructure (with 3 winches, A-frame, carbody, self-assembly equipment)
상부 (3개의 윈치, A -프레임, 카보디, 자가-조립 장치) $61,8 \mathrm{t}$
Superstructure (with 3 winches, A-frame and quick-connection) 상부 (3개의 윈치, A -프레임과 퀵-커넥션) $41,2 \mathrm{t}$
Carbody with jacks and quick-connection
잭(jacks)과 퀵 커넥션을 포함 한 카보디 23,0 t
Crawlers with track shoes (1200 mm)
트랙슈를 포함 한 크롤라 $(1200 \mathrm{~mm})$ $2 \times 25,9 \mathrm{t}$
Counterweight 100 t
카운터웨이트

* with quick-connection

퀵-커넥션 포함 시

WTEREX

Erection / lowering the boom systems - 붐 시스템 세우기 / 내리기

Boom combination 붐 조합	Fly jib 플라이 짚 (m)	m 24	30	36	42	48	54	60	Main boom - 메인 붐					96	102	108	114	120	126
									66	72	78	84	90						
SH 중량 메인 붐		X	X	X	X	X	X	X	X	X	X	(X)	-	-	-	-	-	-	-
SH/LH 중량 메인 붐/경량 메인 붐		-	-	-	X	X	X	X	X	X	X	X	(X)	0	0	0	-	-	-
SH/LH SGLmax. 중량 메인 붐/경량 메인 붐 중량 베이스 길이 최대		-	-	-	-	-	-	-	X	X	X	(X)	[X]	0	0	-	-	-	-
SW 85° 러핑 플라이 짚	24	-	X	X	X	X	(X)	[X]	0	0	-	-	-	-	-	-	-	-	-
	30	-	X	X	X	X	(X)	[X]	0	0	-	-	-	-	-	-	-	-	-
	36	-	X	X	X	X	X	[X]	0	0	-	-	-	-	-	-	-	-	-
	42	-	X	X	X	X	X	[X]	0	0	-	-	-	-	-	-	-	-	-
	48	-	X	X	X	X	X	(X)	0	0	-	-	-	-	-	-	-	-	-
	54	-	X	X	X	X	X	0	0	0	-	-	-	-	-	-	-	-	-
	60	-	X	X	X	X	X	0	0	0	-	-	-	-	-	-	-	-	-
	66	-	X	X	X	X	X	0	0	0	-	-	-	-	-	-	-	-	-
	72	-	X	X	X	X	X	0	0	0	-	-	-	-	-	-	-	-	-
SH+LF2 중량 메인 붐+경량 고정 플라이 짚		X	X	X	X	X	X	X	X	(X)	[X]	0	-	-	-	-	-	-	-
SH/LH+LF2 중량 메인 붐/경량 메인 붐+ 경량 고정 플라이 짚	12	-	-	-	X	X	X	X	X	(X)	[X]	[X]	0	0	-	-	-	-	-
SH/LH SGLmax. +LF2 중량 메인 붐/경량 메인 붐 + 경량 고정 플라이 짚 중량 베이스 길	12 일이 최대	-	-	-	-	-	-	-	X	[X]	[X]	[X]	0	0	-	-	-	-	-
SSL 수퍼리프트와 중량 메인 붐		-	0	0	0	0	0	0	0	0	0	10	25	45	-	-	-	-	-
SSL/LSL 수퍼리프트와 중량 메인 붐/ 수퍼리프트와 경량 메인 붐		-	-	-	-	-	-	-	-	-	0	0	10	20	35	45	60	75	90
SSL/LSLSGLmax. 수퍼리프트와 경량 메인 붐/ 수퍼리프트와 경량 메인 붐 중량 베0	이스 길이 최대	-	-	-	-	-	-	-	0	0	0	0	20	35	55	70	90	-	-
SSL+LF2 수퍼리프트와 중량 메인 붐+ 경량 고정 플라이 짚	12	-	-	0	0	0	0	0	0	15	30	50	65	85	-	-	-	-	-
SSL/LSL+LF2 수퍼리프트와 중량 메인 붐/ 수퍼리프트와 경량 메인 붐 + 경량	12 고정 플라이 짚	-	-	-	-	-	-	-	-	-	20	35	50	65	80	95	100	115	130
SSL/LSLSGLmax. +LF2 수퍼리프트와 중량 메인 붐/ 수러피프트와 경량 메인 붐+경량 고정 플라이 짚 중량 베이스 길이 최		-	-	-	-	-	-	-	0	5	20	40	55	75	100	115	-	-	-
SWSL	24	-	-	0	0	0	0	20	40	60	85	105	130	155	-	-	-	-	-
수퍼리프트와 러핑 플라이 짚	30	-	-	0	0	0	0	20	40	65	85	110	135	165	-	-	-	-	-
	36	-	-	0	0	0	0	20	40	65	90	115	140	160	-	-	-	-	-
	42	-	-	0	0	0	0	15	40	65	90	120	135	165	-	-	-	-	-
	48	-	-	0	0	0	0	10	35	65	90	120	135	165	-	-	-	-	-
	54	-	-	0	0	0	0	5	30	55	75	105	135	165	-	-	-	-	-
	60	-	-	0	0	0	0	10	25	50	70	100	135	190	-	-	-	-	-
	66	-	-	0	0	0	0	10	30	50	70	95	125	180	-	-	-	-	-
	72	-	-	0	0	0	0	15	35	55	75	95	120	175	-	-	-	-	-
	78	-	-	0	0	0	0	15	35	55	75	100	120	-	-	-	-	-	-
	84	-	-	0	0	0	0	20	40	60	80	105		-	-	-	-	-	-
X without assisting equipment \cdot 보조 장비(장치) 없이 (X) idler wheel supported - 아이들러 휠로 지원						o with assist crane•보조 크레인 필요 [X] with additional side jack - 추가 사이드 잭 (side jack) 필요													
All Superlift combinations can be erected or lowered to the ground without assisting equipment. The figures shown represent the necessary SL-counterweight in [t]. •모든 수퍼리프트 조합은 보조 장비(장치)없이 완전이 세워지거나 내려질 수 있다. 표기된 수치들은 필요한 SL-카운터웨이트 [t$]$ 을 나타낸다.																			

BOOM COMBINATIONS

붐 조합

중량 메인 붐

SSL/LSL

SSL/LSL SGLmax.
수퍼리프트와 중량 메인 붐/수퍼리프트와 경량 메인 붐 수퍼리프트와 중량 메인 붐/수퍼리프트와 경량 메인 붐 중량 베이스 길이 최대

러핑 플라이 짚

QTEREX

BOOM COMBINATIONS

중량 메인 붐 + 경량 고정 플라이 짚
중량 메인 붐/경량 메인 붐+경량 고정 플라이 짚 중량 메인 붐/경량 메인 붐 + 경량 고정 플라이 짚 중량 베이스 길이 y 최대

SSL+LF2
SSL/LSL+LF2
SSL/LSL+LF2 SGL max.
수퍼리프트와 중량 메인 붐 + 경량 고정 플라이 짚
수퍼리프트와 중량 메인 붐/수퍼리프트와 경량 메인 붐+경량 고정 플라이 짚 수퍼리프트와 중량 메인 붐/수러피프트와 경량 메인 붐+경량 고정 플라이 짚 중량 베이스 길이 최대

중량 메인 붐, 중량 메인 붐/경량 메인 붐

CC 2400-1

중량 메인 붐

-	7,25 m		$29.8 \mathrm{~m} / \mathrm{s}$				360°				ISO	
\%	24		30			m	42		48		54	
\bigcup_{6}	$\begin{gathered} 160 \mathrm{t}+ \\ 40 \mathrm{t} \mathrm{ZB} \\ \hline \end{gathered}$	$100 \mathrm{t}$	$\begin{gathered} 160 \mathrm{t}+ \\ 40 \mathrm{t} \mathrm{ZB} \\ \hline \end{gathered}$	$100 \mathrm{t}$	$\begin{array}{r} 160 \mathrm{t}+ \\ 40 \mathrm{t} \mathrm{ZB} \\ \hline \end{array}$	$100 \mathrm{t}$	$\begin{array}{r} 160 \mathrm{t}+ \\ 40 \mathrm{t} \mathrm{ZB} \\ \hline \end{array}$	$100 \text { t }$	$\begin{array}{r} 160 \mathrm{t}+ \\ 40 \mathrm{t} \mathrm{ZB} \end{array}$	$100 \mathrm{t}$	$\begin{array}{r} 160 \mathrm{t}+ \\ 40 \mathrm{t} \mathrm{ZB} \\ \hline \end{array}$	$100 \mathrm{t}$
m	t	t	t	t	t	t	t	t	t	t	t	t
5,5	347,0*	266,0	-	-	-	-	-	-	-	-	-	-
6	335,0*	259,0	361,0*	259,0	-	-	-	-	-	-	-	-
7	315,0*	234,0	303,0*	213,0	308,0	195,0	284,0	180,0	-	-	-	-
8	278,0*	195,5	257,0*	180,0	264,0	167,0	246,0	155,0	230,0	144,0	216,0	134,5
9	239,0*	167,5	247,0	156,0	231,0	145,0	216,0	135,5	204,0	127,0	192,0	119,0
10	232,0	145,5	218,0	137,0	205,0	128,5	193,0	120,5	182,5	113,0	172,5	106,5
12	175,0	108,0	174,0	107,0	166,5	103,5	158,0	97,9	150,5	92,5	143,0	87,4
14	139,0	85,3	138,0	84,1	137,0	83,0	133,5	81,8	127,5	77,5	121,5	73,4
16	115,0	69,9	114,0	68,7	112,5	67,6	111,5	66,5	110,0	65,6	105,0	62,7
18	97,9	58,9	96,6	57,7	95,4	56,5	94,3	55,4	93,4	54,5	92,4	53,7
20	84,8	50,7	83,6	49,4	82,3	48,2	81,1	47,0	80,2	46,1	79,4	45,3
22	74,7	44,3	73,4	43,0	72,1	41,7	70,9	40,5	70,0	39,6	69,1	38,8
24	,	,	65,3	37,9	63,9	36,5	62,7	35,3	61,7	34,4	60,9	33,5
26	-	-	58,6	33,7	57,2	32,3	56,0	31,1	55,0	30,1	54,1	29,2
28	-	-	53,2	30,3	51,7	28,8	50,4	27,5	49,4	26,5	48,5	25,6
30	-	-	-	-	47,1	25,9	45,7	24,6	44,7	23,5	43,7	22,5
34	-	-	-	-		,	38,3	19,9	37,1	18,6	36,2	17,4
38	-	-	-	-	-	-	32,7	16,3	31,5	14,8	30,4	13,6
42	-	-	-	-	-	-	.	,	27,1	12,0	25,9	10,6
46	-	-	-	-	-	-	-	-		-	22,3	8,3
50	-	-	-	-	-	-	-	-	-	-	-	-

* $\sqsupseteq 140 t+40 t$ ZB

Capacities > 316 t: Only with special equipment (heavy-duty head HA $400 \mathrm{t}+$ sheave assembly 400 t)
인양능력 > 316t: 오직 특수 장치 시 가능 (헤비-듀티 헤드 HA $400 \mathrm{t}+$ 쉬브 조립체 400 t)

중량 메인 붐/경량 메인 붐

For SH/LH SGLmax. a boom power-kit is required•SH/LH SGLmax. 을 위해서는 붐 파워-키트 필요

중량 메인 붐/경량 메인 붐

For SH/LH SGLmax. a boom power-kit is required•SH/LH SGLmax. 을 위해서는 붐 파워-키트 필요

수퍼리프트와 중량 메인 붐, 수퍼리프트와 중량 메인붐/
수퍼리프트와 경량 메인 붐

CC 2400-1

수퍼리프트와 중량 메인 붐

$160 t+40 \mathrm{tzB}$			п-6-7,25 m				$19.8 \mathrm{~m} / \mathrm{s}$		360°			150
	30 m		36 m		42 m		48 m		54 m		60 m	
	0 t	0-240 t	0 t	0-24	0 t	0-240 t						
$\xrightarrow{0}$	9 m	9-15m	9 m	9-1	9 m	9-15m						
m	t	t	t	t	t	t	t	t	t	t	t	t
6	359,0	400,0	-	-	-	-	-	-	-		-	-
7	338,0	400,0	320,0	400,0	295,0	400,0	-	-	-	-	-	-
8	295,0	400,0	274,0	400,0	256,0	400,0	239,0	383,0	224,0	350,0	-	-
9	256,0	400,0	240,0	400,0	225,0	400,0	212,0	383,0	200,0	350,0	189,0	306,0
10	222,0	400,0	213,0	400,0	201,0	400,0	190,0	383,0	180,0	350,0	170,5	304,0
12	174,5	400,0	173,5	400,0	165,0	400,0	157,0	380,0	149,0	350,0	142,0	303,0
14	142,5	359,0	141,5	365,0	139,0	362,0	133,0	350,0	127,0	337,0	121,5	303,0
16	117,5	312,0	116,5	323,0	115,5	322,0	114,5	319,0	110,0	310,0	105,5	285,0
18	100,0	266,0	98,9	287,0	97,8	286,0	96,9	285,0	96,2	283,0	92,9	266,0
20	86,6	236,0	85,4	255,0	84,2	257,0	83,4	256,0	82,6	254,0	81,9	249,0
22	76,1	217,0	74,9	220,0	73,7	230,0	72,8	230,0	72,0	230,0	71,3	229,0
24	67,7	190,0	66,5	205,0	65,3	210,0	64,4	208,0	63,5	207,0	62,8	207,0
26	60,9	165,0	59,6	190,0	58,4	191,0	57,4	189,5	56,6	189,0	55,8	189,0
28	55,3	142,5	53,9	173,0	52,6	175,5	51,7	175,0	50,8	173,0	50,0	173,0
30	,	,	49,1	154,0	47,8	162,0	46,8	161,5	45,9	161,0	45,1	159,5
32	-	-	45,1	136,0	43,7	150,0	42,6	149,5	41,7	149,0	40,9	147,5
34	-	-	-	-	40,1	140,0	39,0	139,5	38,1	138,5	37,2	138,0
38	-	-	-	-	34,4	114,0	33,2	122,5	32,1	121,5	31,2	121,0
42	-	-	-	-	-	-	28,7	107,0	27,5	108,0	26,5	107,5
44	-	-	-	-	-	-	26,8	97,3	25,6	102,0	24,6	101,5
46	-	-	-	-	-	-	,	,	23,8	97,0	22,7	96,3
48	-	-	-	-	-	-	-	-	22,3	91,6	21,0	91,4
50	-	-	-	-	-	-	-	-	,	-	19,5	87,0
54	-	-	-	-	-	-	-	-	-	-	16,9	78,9

	66 m		72 m		84 m		90 m		96 m		
		0-240 t		0-240 t		0-240 t	0 t	-240 t	0 t	0-240 t	
\bigcirc		9-15m		9-15m	9 m	9-15m	9 m	9-15m	9 m	9-15m	
m	t	t	t	t	t	t	t	t	t	t	
9	179,0	264,0	-	-	-	-	-	-	-	-	
10	162,0	264,0	154,0	228,0	-	-	-	-	-	-	
11	148,0	262,0	141,0	228,0	128,5	171,5	-	-	-	-	
12	136,0	262,0	129,5	227,0	118,5	171,5	113,5	145,5	108,5	126,5	
14	116,5	262,0	111,5	227,0	102,5	170,0	98,5	145,5	94,3	126,5	
16	101,0	256,0	97,2	227,0	89,6	169,0	86,2	145,5	82,6	126,5	
18	89,4	243,0	85,7	218,0	79,2	168,5	76,2	145,0	73,0	126,5	
20	79,5	230,0	76,3	210,0	70,5	165,0	67,9	144,5	65,0	126,5	
22	70,8	218,0	68,4	202,0	63,3	161,5	60,9	141,0	58,3	125,0	
24	62,2	207,0	61,5	193,0	57,1	158,5	55,0	139,0	52,5	122,5	
26	55,3	188,5	54,5	184,0	51,7	155,0	49,8	137,0	47,5	121,0	
28	49,4	173,0	48,7	172,5	47,1	149,0	45,3	134,0	43,1	119,5	
30	44,5	159,0	43,7	159,0	42,6	143,0	41,3	129,5	39,3	117,0	
34	36,6	137,0	35,8	136,5	34,6	131,0	34,1	120,0	32,8	109,5	
38	30,6	120,5	29,8	119,5	28,5	118,5	27,9	110,5	27,0	101,5	
42	25,9	107,0	24,9	106,5	23,4	105,0	22,8	101,5	21,8	95,0	
46	21,9	95,8	20,8	95,2	19,3	94,4	18,7	92,2	17,7	88,0	
50	18,6	86,5	17,5	85,8	15,9	84,9	15,3	82,8	14,3	81,1	
54	15,9	78,6	14,7	77,9	13,1	76,9	12,4	76,6	11,4	74,1	
58	13,6	71,9	12,4	71,1	10,7	70,1	10,0	69,7	9,0	69,0	
62	,	,	10,3	65,3	8,6	64,2	7,9	63,7	6,8	63,0	
66	-	-	-	-	6,6	59,0	5,9	58,6	4,8	57,8	
70	-	-	-	-	4,8	54,5	4,1	54,0	-	53,2	
74	-	-	-	-	3,3	49,5	-	50,0	-	49,2	
78	-	-	-	-	-	-	-	45,0	-	45,6	
82	-	-	-	-	-	-	-	-	-	41,4	

Capacities > 316 t: Heavy-duty head HA $400 \mathrm{t}+$ sheave assembly 400 t is required
인양능력 $>316 \mathrm{t}$: 오직 특수 장치 시 가능 (헤비-듀티 헤드 HA $400 \mathrm{t}+$ 쉬브 조립체 400 t)

수퍼리프트와 중량 메인붐/수퍼리프트와 경량 메인 붐

중량 메인 붐+고정 플라이 짚, 중량 메인 붐/ 경량 메인 붐 + 고정 플라이 짚

중량 메인 붐 + 고정 플라이 짚

중량 메인 붐 + 고정 플라이 짚

중량 메인 붐 + 고정 플라이 짚

0	10°	15°	10°	30°	10°	30°
m	t	t	t	t	t	t
13	90,5	-	-	-	-	-
14	90,5	85,5	-	-	-	-
16	79,0	80,5	49,9	-	-	-
18	70,0	71,0	49,9	-	-	-
19	65,5	66,5	49,9	-	30,0	-
20	62,0	63,0	49,9	-	30,0	-
22	55,5	56,0	49,9	-	30,0	-
24	49,9	50,5	49,8	23,2	30,0	-
26	45,0	45,7	45,7	22,5	30,0	-
28	40,7	41,4	41,5	21,8	29,9	-
30	36,9	37,5	37,9	21,1	29,8	-
32	33,7	34,3	34,8	20,5	29,5	13,5
34	30,6	31,1	31,7	20,0	29,2	13,1
38	24,8	25,4	26,6	18,9	27,4	12,3
42	19,8	20,2	22,5	18,0	23,3	11,6
46	15,7	16,1	18,5	17,1	19,9	11,0
50	12,3	12,7	15,0	16,4	16,8	10,4
54	9,5	9,8	12,1	14,3	13,8	9,9
58	7,1	7,4	9,6	11,6	11,2	9,4
62	5,1	5,3	7,4	9,3	9,0	9,0
66	3,3	3,5	5,6	7,2	7,1	8,7
70	-	-	4,0	5,4	5,5	7,8
74	-	-	2,5	3,8	4,0	6,1
78	-	-	-	-	2,7	4,5
82	-	-	-	-	-	3,2

중량 메인 붐/경량 메인 붐+고정 플라이 짚

중량 메인 붐/경량 메인 붐+고정 플라이 짚

중량 메인 붐/경량 메인 붐 + 고정 플라이 짚

수퍼리프트와 중량 메인 붐 + 고정 플라이 짚.
수퍼리프트와 중량 메인 붐/수퍼리프트와 경량 메인 붐 + 고정 폴라이 짚

Q TEREX

수퍼리프트와 중량 메인 붐 + 고정 플라이 짚

수퍼리프트와 중량 메인 붐 + 고정 플라이 짚

수퍼리프트와 중량 메인 붐 + 고정 플라이 짚

$160 t+40 t 73$			9-15 m		E. 0-240 t						م $9.8 \mathrm{~m} / \mathrm{s}$		360°	ISO		
	\%	12 m	84 m		36 m				12 m		90 m		36 m			
	*			24 m					$1 \downarrow$	24 m						
	स 10°		10°	$\bigcirc 0^{\circ}+3{ }^{\circ}$		10°						15^{15}	$1{ }^{10}$	$1{ }^{-} 30^{\circ}$	10°	$1 \mathrm{3} 0^{\circ}$
m	t	t	t	t		t	t	t	t	t	t	t	t	t		
13	112,0	-	-			-				-	-	-	-	-		
14	112,0	99,0	-			-			96,5	-	-	-	-	-		
15	111,0	99,0	-	-		-			96,5	91,0	-	-	-	-		
16	111,0	99,0	53,5	, 5		-			96,5	91,0			-	-		
17	111,0	97,0	53,5	, 5		-			96,5	91,0	50,5	-	-	-		
18	111,0	94,5	53,5	, 5					96,5	90,5	50,5			-		
19	110,0	92,5	53,5	, 5		33,2			96,5	90,0	50,5		-	-		
20	109,0	90,5	53,5	, 5		33,2	-		96,0	90,0	50,5	-	31,8	-		
22	106,0	86,5	53,5			33,2			95,5	87,0	50,5	-	31,8	-		
24	103,0	83,0	53,0	,0 23,2		33,2			95,0	83,5	50,5	23,3	31,8	-		
26	98,5	79,0	52,5	22,5		33,2	-		93,0	80,5	50,5	22,6	31,8	-		
28	94,0	75,5	51,0	,0 21,8		33,2			90,5	78,0	50,5	22,0	31,8	-		
30	90,0	72,5	48,8	, 21,1		33,2			88,5	74,5	49,1	21,3	31,8	-		
32	86,0	69,5	46,4	, 20,5		32,3	13,5		86,0	71,5	47,3	20,7	31,4	13,6		
34	82,0	67,0	44,2	,2 20,0		31,1	13,		84,0	69,0	45,6	20,2	31,0	13,2		
38	75,5	62,0	40,4	, 18,9		28,3	12,3	,3	77,5	64,0	41,8	19,1	29,0	12,4		
42	69,5	58,0	37,1	, 18,0		25,9	11,6	,6	71,0	60,0	38,5	18,2	26,7	11,7		
46	64,5	54,5	34,4	, 17,1		23,8	11,0	,0	65,0	56,5	35,7	17,4	24,7	11,1		
50	59,0	51,5	32,0	, 0 16,4		22,1	10,4		58,5	53,5	33,2	16,7	22,9	10,5		
54	53,0	48,9	29,9	,9 15,7		20,5		,9	52,0	49,4	31,1	16,0	21,3	10,0		
58	48,4	46,5	28,0	, 0 15,		19,2		, 4	45,8	45,3	29,2	15,4	19,9	9,6		
62	45,1	44,3	26,4	, 14,6		18,0		,0	41,9	41,9	27,5	14,9	18,7	9,2		
66	41,4	41,6	25,0	, 0 14,1		16,9		,7	39,0	39,0	26,0	14,4	17,6	8,8		
70	37,8	38,0	23,7	, 13,7		16,0		,3	36,1	36,1	24,7	13,9	16,6	8,5		
74	34,6	34,7	22,6	,6 13,3		15,1		,0	33,2	33,3	23,5	13,6	15,7	8,2		
78	31,8	31,9	21,6	,6 13,0		14,3		7,8	30,3	30,4	22,5	13,2	14,9	7,9		
82	28,7	29,0	20,6	,6 12,8		13,6	7,5	7,5	27,4	27,5	21,5	12,9	14,2	7,7		
86	25,4	25,7	19,8	,8		13,0	7,3	7,3	24,5	24,6	20,6	12,7	13,5	7,4		
90	-	-	19,1	,1		12,5	7,2	,2	21,6	21,8	19,9	-	13,0	7,3		
94	-	-	18,5	,5		12,0	7,0	7,0			19,2	-	12,4	7,1		
98	-	-	,	-		11,5	,		-	.	18,2	-	11,9	7,0		
102	-	-	-	-		11,1	-		-	-	17,0	-	11,5	-		
106	-	-	-	-		10,8	-		-	-	-	-	11,1	-		
110	-	-	-	-		-			-	-	-	-	10,8	-		
114	-	-	-	-		-	-	-	-	-	-	-	10,5	-		

수퍼리프트와 중량 메인 붐 + 고정 플라이 짚

수퍼리프트와 중량 메인 붐/수퍼리프트와 경량 메인 붐 +고정 플라이 짚

수퍼리프트와 중량 메인 붐/수퍼리프트와 경량 메인 붐 +고정 플라이 짚

수퍼리프트와 중량 메인 붐/수퍼리프트와 경량 메인 붐 +고정 플라이 짚

$160 t+40 \mathrm{tzB}$				9-15 m	\ldots	0-240 t		7,25 m		$12.8 \mathrm{~m} / \mathrm{s}$		360°		150
102 m								108 m						
		$\begin{aligned} & \text { SSL/LSL+LF2 } \\ & \text { SGLmax. } \end{aligned}$	SSL/LSL + LF2					$\begin{aligned} & \text { SSL/LSL+LF2 } \\ & \text { SGLmax. } \end{aligned}$		SSL/LSL + LF2				
		12 m		24 m		36 m		12 m			24 m		36 m	
$\underbrace{0}_{\leftrightarrow}$	1 10°	15°	10°	10°	30°	$\checkmark 10^{\circ}$		10°	15	10°	10°	30°	10°	30°
m	t	t	t	t	t	t	t	t	t	t	t	t	t	t
15	81,5	-	59,0	-	-	-	-	-	-	-	-	-	-	-
16	81,5	77,5	59,0	-	-	-	-	73,0	-	53,5	-	-	-	-
17	81,5	77,5	58,5	-	-	-	-	73,0	69,5	53,5	-	-	-	-
18	81,5	77,5	58,0	38,1	-	-	-	73,0	69,5	53,5	-	-	-	-
19	81,5	77,5	57,5	38,1	-	-	-	73,0	69,5	53,0	35,7	-	-	-
20	81,5	77,5	57,5	38,1	-	-	-	73,0	69,5	53,0	35,7	-	-	-
22	81,5	77,5	56,5	37,4	-	25,9	-	72,5	69,5	52,5	35,4	-	24,2	-
24	81,5	77,5	55,0	36,8	-	25,8	-	72,0	69,5	51,5	34,9	-	24,2	-
26	81,5	75,5	54,0	36,0	18,2	25,5	-	71,5	68,5	51,0	34,3	18,2	24,0	-
28	81,5	72,5	53,0	35,3	17,7	25,3	-	71,0	68,0	50,0	33,6	17,7	23,8	-
30	81,0	70,0	52,0	34,5	17,3	25,0	-	70,0	67,5	49,5	33,0	17,3	23,6	-
34	80,5	65,5	49,6	33,0	16,5	23,9	10,4	68,0	65,5	47,7	31,7	16,6	22,7	10,3
38	77,5	61,5	47,4	31,5	15,8	22,9	9,8	65,5	63,0	46,0	30,4	15,9	21,9	9,8
42	72,5	58,0	45,6	30,0	15,2	22,0	9,4	62,0	59,5	44,4	29,1	15,3	21,0	9,4
46	66,5	55,0	43,8	28,9	14,6	21,0	8,9	57,5	56,0	42,8	28,1	14,7	20,1	9,0
50	60,0	52,0	41,9	27,8	14,1	20,2	8,5	53,0	52,0	41,3	27,1	14,2	19,3	8,6
54	53,5	49,9	40,1	26,7	13,6	19,5	8,2	49,0	48,2	39,7	26,2	13,7	18,7	8,2
58	48,2	47,7	38,3	25,6	13,2	18,8	7,9	44,6	44,1	38,2	25,3	13,3	18,1	7,9
62	42,2	42,4	36,4	24,5	12,8	18,1	7,6	40,2	40,0	36,6	24,4	12,9	17,5	7,6
66	36,0	36,6	34,6	23,5	12,4	17,4	7,3	35,8	35,9	35,1	23,4	12,6	16,9	7,3
70	33,7	33,8	32,7	22,4	12,1	16,7	7,1	31,6	31,9	33,5	22,5	12,2	16,3	7,1
74	31,4	31,5	30,8	21,3	11,9	15,9	6,8	29,6	29,6	31,6	21,6	12,0	15,7	6,9
78	29,1	29,2	28,9	20,5	11,6	15,1	6,6	27,5	27,6	29,6	20,6	11,7	15,0	6,7
82	26,8	26,9	27,0	19,8	11,4	14,5	6,4	25,4	25,5	27,7	19,8	11,5	14,4	6,5
86	24,5	24,6	25,1	19,1	11,2	13,8	6,3	23,4	23,4	25,7	19,0	11,3	13,8	6,3
90	22,2	22,3	23,2	18,3	11,1	13,3	6,2	21,3	21,4	23,8	18,2	11,1	13,5	6,2
94	19,9	20,1	21,3	17,6	10,9	12,7	6,0	19,2	19,3	21,8	17,3	11,0	13,1	6,1
98	17,7	17,8	19,4	16,9	10,9	12,3	5,9	17,2	17,2	19,9	16,5	10,9	12,6	6,0
102	15,4	15,5	17,5	16,1	-	11,8	5,9	15,1	15,2	17,9	15,7	10,8	12,2	5,9
106	-	-	-	15,4	-	11,4	5,8	13,0	13,1	16,0	14,8	-	11,8	5,8
110	-	-	-	14,7	-	11,1	-	-	-	-	14,0	-	11,4	5,7
114	-	-	-	,	-	10,7	-	-	-	-	13,2	-	11,1	5,7
118	-	-	-	-	-	10,5	-	-	-	-	12,4	-	10,7	-
122	-	-	-	-	-	10,2	-	-	-	-	-	-	10,5	-
126	-	-	-	-	-	,	-	-	-	-	-	-	10,1	-
130	-	-	-	-	-	-	-	-	-	-	-	-	9,7	-
134	-	-	-	-	-	-	-	-	-	-	-	-	,	-

수퍼리프트와 중량 메인 붐/수퍼리프트와 경량 메인 붐
 +고정 플라이 짚

수퍼리프트와 중량 메인 붐/수퍼리프트와 경량 메인 붐 +고정 플라이 짚

$160 t+40$ t ZB			9-15 m		0-240	근 7,25 m			2 $9.8 \mathrm{~m} / \mathrm{s}$		360°	150
$\underset{\leftrightarrow}{\mathrm{J}}$	120 m						126 m					
	SSL/LSL + LF2						SSL/LSL + LF2					
	12 m		24 m		36 m		12 m		24 m		36 m	
		15°	10°	30°	10°	30°	10°	15°	$\checkmark \quad 10^{\circ}$	30°	10°	30°
m	t	t	t	t	t	t	t	t	t	t	t	t
17	39,8	-	-	-	-	-	34,5	-	-	-	-	-
18	39,8	37,1	-	-	-	-	34,5	32,3	-	-	-	-
20	39,2	36,9	26,6	-	-	-	34,2	32,3	23,7	-	-	-
22	38,7	36,4	26,6	-	-	-	33,7	31,9	23,7	-	-	-
24	38,1	35,9	26,2	-	18,7	-	33,2	31,5	23,3	-	16,7	-
26	37,5	35,3	25,7	-	18,7	-	32,6	31,1	23,0	-	16,7	-
28	36,8	34,7	25,3	17,5	18,5	-	32,1	30,6	22,6	16,1	16,5	-
30	36,1	34,2	24,8	17,4	18,2	-	31,6	30,1	22,2	16,1	16,3	-
34	34,7	32,9	23,9	16,7	17,6	10,3	30,4	29,0	21,4	15,9	15,9	-
38	33,3	31,7	23,0	16,0	16,9	9,8	29,2	28,0	20,6	15,7	15,4	9,8
42	31,9	30,4	22,0	15,4	16,3	9,4	28,1	26,9	19,9	15,4	14,9	9,4
46	30,9	29,4	21,1	14,9	15,6	9,0	27,0	25,9	19,1	14,9	14,3	9,0
50	29,8	28,5	20,4	14,4	15,0	8,6	26,1	25,1	18,4	14,5	13,7	8,6
54	28,7	27,5	19,7	13,9	14,4	8,3	25,2	24,3	17,8	14,0	13,1	8,3
58	27,6	26,5	19,0	13,5	14,0	8,0	24,3	23,4	17,2	13,6	12,7	8,0
62	26,6	25,6	18,4	13,1	13,5	7,7	23,4	22,6	16,6	13,2	12,3	7,7
66	25,5	24,6	17,7	12,8	13,0	7,4	22,5	21,7	16,0	12,9	11,9	7,5
70	24,4	23,6	17,0	12,4	12,6	7,2	21,5	20,9	15,4	12,5	11,4	7,2
74	23,3	22,7	16,3	12,1	12,1	7,0	20,6	20,1	14,8	12,2	11,0	7,0
78	22,2	21,7	15,7	11,9	11,6	6,8	19,7	19,2	14,2	12,0	10,6	6,8
82	21,1	20,6	15,0	11,6	11,2	6,6	18,8	18,4	13,6	11,7	10,2	6,6
86	20,0	19,6	14,4	11,4	10,7	6,4	17,9	17,5	13,0	11,5	9,8	6,4
90	18,9	18,5	13,8	11,2	10,2	6,3	16,9	16,6	12,5	11,2	9,4	6,3
94	17,8	17,5	13,3	11,1	9,8	6,1	16,0	15,7	12,0	10,8	8,9	6,1
98	16,7	16,4	12,8	10,9	9,6	6,0	15,1	14,8	11,5	10,4	8,6	6,0
102	15,6	15,4	12,3	10,8	9,3	5,9	14,1	13,9	11,0	10,1	8,3	5,9
106	14,5	14,3	11,7	10,7	9,0	5,8	13,2	13,0	10,5	9,7	8,0	5,8
110	13,3	13,3	11,2	10,4	8,8	5,7	12,3	12,2	10,0	9,3	7,8	5,7
114	12,2	12,2	10,7	,	8,5	5,7	11,4	11,3	9,6	9,0	7,5	5,7
118	11,1	11,2	10,2	-	8,2	5,6	10,4	10,4	9,1	-	7,2	5,6
122	-	-	9,6	-	8,0	5,6	9,5	9,5	8,6	-	6,9	5,6
126	-	-	9,1	-	7,7	-	-	-	8,1	-	6,6	5,5
130	-	-	,	-	7,4	-	-	-	7,6	-	6,4	-
134	-	-	-	-	7,2	-	-	-	7,1	-	6,1	-
138	-	-	-	-	6,9	-	-	-	-	-	5,8	-
142	-	-	-	-	-	-	-	-	-	-	5,5	-
146	-	-	-	-	-	-	-	-	-	-	-	-

러핑 플라이 짚

CC 2400-1

러핑 플라이 짚

	$160 t+40$	t ZB		마는가,25 m				ค $9.8 \mathrm{~m} / \mathrm{s}$				360°			ISO
- 30 m															
	\%	24 m		30 m			36 m			42 m			48 m		
U	\% $87{ }^{\circ}-85^{\circ}$		65°	$87^{\circ}-85^{\circ}$	75°	65°	87 ${ }^{\circ} 85^{\circ}$	75°	65°	$87^{\circ}-85^{\circ}$	75°	65°	870 85°		65°
m	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t
11	168,0	-	.	.	.	-	.	-	-	-	-	-	-	-	
12	154,5	-	-	147,5	-	-	-	-	-	-		-	-		-
13	143,0	-	-	137,0	-	-	131,0	-	-	-	-	-	-	-	-
14	133,0	-	-	127,5	-	-	122,5	-	-	-	-	-	-	-	-
15	124,5	-	-	119,5	-	-	114,5	-	-	110,5	-	-	-	-	-
16	117,0	-	-	112,0	-	-	108,0	-	-	104,0	-	-	100,0	-	-
18	104,0	-	-	100,0	-	-	96,5	-	-	93,0	-	-	89,7	-	-
20	91,2		-	90,4	-	-	87,1	-	-	84,0	-	-	81,1	-	-
22	80,5	74,6	-	79,7	-	-	79,2	-	-	76,4	-	.	73,8	-	-
24	71,9	66,6	-	71,1	65,5		70,6		-	69,8			67,7	-	-
26	64,9	60,0	-	64,1	59,0	-	63,6	-	-	62,8	-	-	62,4	-	-
28	58,3	54,6	-	58,3	53,6	-	57,7	52,9	-	56,9	-	-	56,7	-	-
30	-	50,0	46,7	53,4	49,0	-	52,8	48,3	-	52,0	47,3	-	51,8	-	-
32	-	46,0	42,9	49,1	45,1	-	48,6	44,4	-	47,7	43,4	-	47,5	43,1	-
34	-	-	39,7	44,9	41,7	38,6	44,9	41,0	-	44,1	40,0	-	43,8	39,7	-
38	-	-	34,5	-	36,1	33,4	38,9	35,4	32,6	38,0	34,4		37,7	34,1	-
40	-	-	-	-	-	31,2	-	33,1	30,4	35,5	32,1	29,4	35,2	31,7	-
42	-	-	-	-	-	29,3	-	31,0	28,5	33,3	30,0	27,4	33,0	29,6	-
44	-	-	-	-	-	27,6	-	29,2	26,7	31,4	28,2	25,7	31,0	27,8	25,3
46	-	-	-	-	-	-	-	-	25,2	-	26,5	24,1	29,1	26,1	23,7
50	-	-	-	-	-		-	.	22,6	-	23,7	21,5	26,0	23,2	21,0
54	-	-	-	-	-	-	-	-	-	-	-	19,3	-	20,8	18,6
58	-	-	-	-	-	-	-	-	-	-	-	-	-	-	16,7

Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}$ and 65°, capacities for intermediate boom positions are calculated by the crane control system IC-1 메인붐 각도 $87^{\circ}-85^{\circ}, 75^{\circ}$ 와 65°; 중간 붐 위치의 인양능력은 크레인 컨트롤 시스템 $\mathrm{IC}-1$ 으로 계산된다

CC 2400-1

러핑 플라이 짚

Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}$ and 65°, capacities for intermediate boom positions are calculated by the crane control system IC-1 메인붐 각도 $87^{\circ}-85^{\circ}, 75^{\circ}$ 와 65°; 중간 붐 위치의 인양능력은 크레인 컨트롤 시스템 IC-1으로 계산된다

CC 2400-1

러핑 플라이 짚

	$160 t+40$	t ZB							\& $9.8 \mathrm{~m} / \mathrm{s}$			360°			ISO
$\xrightarrow{3}$	24 m			30 m			36 m			42 m			48 m		
	- $87{ }^{\circ}-85^{\circ}$		65°	$87^{\circ}-85^{\circ}$	75°		$87^{\circ}-85^{\circ}$	75°		$87^{\circ}-85^{\circ}$			870 85°		65°
m	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t
11	152,0	.	-	-	-	-	-	-	-	.
12	140,5		-		-		-						-		
13	130,5	-	-	125,0	-	-	-	-	-	-	-	-	-	-	-
14	122,0	-	-	117,0	-	-	112,5	-	-	-	-	-	-	-	
15	114,5	-	-	110,0	-	.	105,5	-	-	101,5	-	-	-	-	-
16	108,0	-	-	103,5	-	-	99,9	-	-	96,1	-	-	-	-	-
17	102,0	-	-	98,2	-	.	94,5	-	-	91,0	-	-	87,7	-	-
18	96,8	-	-	93,1	-	-	89,7	-	-	86,3	-	-	83,3	-	-
20	87,6	-	-	84,3	-	-	81,2	-	-	78,3	-	-	75,5	-	-
22	79,6	-	-	76,9	-	-	74,1	-	-	71,5	-	-	69,0	-	-
24	71,1	-	-	70,3	-	-	68,1	-	-	65,7	-	-	63,4	-	-
26	64,1	56,6	-	63,3	-	-	62,8	-	-	60,7	-	-	58,6	-	-
28	57,1	51,4	-	57,5	50,3	-	57,0	-	-	56,2	-	-	54,4	-	-
30	-	46,9	-	52,6	45,9	-	52,1	45,2	-	51,3	-	-	50,7	-	-
32	-	43,2	-	48,4	42,1	-	47,9	41,4	-	47,0	40,4	-	46,9	-	-
34	-	39,9	-	43,8	38,9	-	44,2	38,2	-	43,4	37,2	-	43,2	-	-
36	-	37,1	32,9	-	36,1	-	41,1	35,4	-	40,2	34,3	-	40,0	34,0	-
38	-	-	30,6	-	33,6	-	38,3	32,9	-	37,4	31,9	-	37,2	31,6	-
40	-	-	28,6	-	31,4	27,4	34,9	30,7	-	34,9	29,7	-	34,7	29,3	-
42	-	-	26,8	-	29,5	25,7	-	28,7	24,8	32,7	27,7	-	32,4	27,4	-
46	-	-	-	-	.	22,6	-	25,4	21,7	28,2	24,3	20,4	28,6	24,0	-
48	-	-	-	-	-	21,3	-	24,0	20,4	-	22,9	19,1	27,0	22,5	\cdot
50	-	-	-	-	-	-	-	-	19,2	-	21,6	17,9	25,5	21,2	17,4
54	-	-	-	-	-	-	-	-	17,1	-	19,5	15,8	-	18,9	15,3
58	-	-	-	-	-	-	-	-	-	-	-	14,1	-	16,9	13,5
62	-	-	-	-	-	-	-	-	-	-	-	-	-	-	12,0
66	-	-	-	-	-	-	-	-	-	-	-	-	-		10,7
54 m				60 m			66 m			72 m					
\circlearrowright		75 ${ }^{\circ}$	65°	$87^{\circ}-85^{\circ}$	75°	65°	870 -85°	75°	65°	$87^{\circ}-85^{\circ}$	75°	65°			
m	t	t	t	t	t	t	t	t	t	t	t	t			
18	76,9	-	-	-	-	-	-	-	-	-	-	-			
19	76,6	-	-	66,3	-	-	-	-	-	-	-	-			
20	73,0	-	-	66,3	-	-	-	-	-	-	-				
22	66,7	-	-	64,4	-	-	56,7	-	-	47,0	-	-			
24	61,4	-	-	59,2	-	-	56,2	-	-	47,0	-	-			
26	56,7	-	-	54,7	-	-	53,0	-	-	46,8	-	-			
28	52,6	-	-	50,7	-	-	49,1	-	-	46,1	-	-			
30	49,0	-	-	47,2	-	-	45,7	-	-	44,0	-	-			
34	42,8	-	-	41,3	-	-	40,0	-	-	38,4	-	-			
38	36,8	31,0	-	36,2	-	-	35,3	-	-	33,8	-	-			
40	34,2	28,8	-	33,7	28,1	-	33,3	-	-	31,9	-	.			
42	32,0	26,8	-	31,4	26,1	-	31,2	-	-	30,1	-	-			
44	30,0	25,1	-	29,4	24,4	-	29,1	23,9	-	28,4	-	.			
46	28,2	23,5	-	27,6	22,8	-	27,3	22,3	-	26,6	21,2	-			
50	25,0	20,7	-	24,4	19,9	-	24,1	19,4	-	23,4	18,4	-			
54	22,4	18,2	14,5	21,8	17,4	-	21,4	17,0	-	20,7	16,0	-			
58	19,6	16,2	12,7	19,6	15,4	11,9	19,2	14,9	-	18,4	13,9	-			
62	-	14,5	11,2	17,7	13,6	10,3	17,3	13,1	9,8	16,5	12,2	-			
66	-	-	9,9	-	12,1	9,0	15,6	11,6	8,5	14,7	10,6	7,4			
70	-	-	8,8	-	10,9	7,9		10,3	7,3	13,2	9,3	6,3			
74	-	-	-	-	-	6,9	-	9,2	6,3	11,9	8,2	5,3			
78	-	-	-	-	-	6,1	-	-	5,5	-	7,2	4,4			
82	-	-	-	-	-	.	-	-	4,7	-	6,3	3,6			
86	-	-	-	-	-	-	-	-	-	-	-	3,0			

Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}$ and 65°, capacities for intermediate boom positions are calculated by the crane control system IC-1 메인붐 각도 $87^{\circ}-85^{\circ}, 75^{\circ}$ 와 65°; 중간 붐 위치의 인양능력은 크레인 컨트롤 시스템 $\mathrm{IC}-1$ 으로 계산된다

CC 2400-1

러핑 플라이 짚

	160 t + 40	ZB		ㄷ-ㅐ, 7,25 m					$09.8 \mathrm{~m} / \mathrm{s}$		360°				150
$48 \mathrm{~m}$															
	\%	24 m			30 m			36 m	\downarrow		42 m			48 m	
0		75°	65°	$87^{\circ}-85^{\circ}$	75°	65°									
m	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t
12	134,0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
13	125,0	-	-	119,5	-	-	-	-	-	-	-	-	-	-	-
14	117,0	-	-	112,0	-	-	107,5	-	-	-	-	-	-	-	-
16	103,5	-	-	99,8	-	-	96,0	-	-	92,3	-	-	-	-	-
17	98,2	-	-	94,5	-	-	90,9	-	-	87,5	-	-	80,9	-	-
18	93,2	-	-	89,6	-	-	86,3	-	-	83,1	-	-	80,1	-	-
20	84,5	-	-	81,3	-	-	78,3	-	-	75,4	-	-	72,8	-	-
22	77,3	-	-	74,3	-	-	71,6	-	-	69,0	-	-	66,6	-	-
24	70,6	-	-	68,4	-	-	65,9	-	-	63,5	-	-	61,3	-	-
26	63,7	54,6	-	62,9	-	-	61,0	-	-	58,7	-	-	56,7	-	-
28	57,9	49,5	-	57,1	-	-	56,6	-	-	54,6	-	-	52,6	-	-
30		45,2	-	52,2	44,1	-	51,7	-	-	50,9	-	-	49,1	-	-
32	-	41,6	-	48,0	40,5	-	47,5	39,8	-	46,6	-	-	45,9	-	-
34	-	38,4	-	43,2	37,3	-	43,9	36,7	-	43,0	35,6	-	42,9	-	-
36	-	35,6	-	-	34,6	-	40,7	33,9	-	39,8	32,8	-	39,7	32,6	-
38	-	33,2	28,4	-	32,2	-	37,9	31,5	-	37,0	30,4	-	36,9	30,2	-
40	-	-	26,5	-	30,0	-	34,4	29,3	-	34,6	28,3	-	34,4	28,0	-
42	-	-	24,8	-	28,1	23,4	-	27,4	-	32,4	26,4	-	32,1	26,1	-
46	-	-	21,9	-	-	20,5	-	24,2	19,5	27,7	23,1	-	28,3	22,8	-
48	-	-	-	-	-	19,2	-	22,8	18,3	-	21,7	17,0	26,7	21,4	-
50	-	-	-	-	-	18,1	-	-	17,1	-	20,4	15,8	25,3	20,0	-
54	-	-	-	-	-	-	-	-	15,2	-	18,2	13,8	-	17,7	13,4
58	-	-	-	-	-	-	-	-	,	-	,	12,2	-	15,8	11,7
62	-	-	-	-	-	-	-	-	-	-	-	10,9	-	-	10,3
66	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9,1

0	54 m			60 m			66 m			72 m		
	$87^{\circ}-85^{\circ}$	75°	65°	$87^{\circ}-85^{\circ}$	75°		$87^{\circ}-85^{\circ}$			$87^{\circ}-85^{\circ}$		65°
m	t	t	t	t	t	t	t	t	t	t	t	t
18	70,3	-	-	-	-	-	-	-	-	-	-	-
20	70,3	-	-	60,3	-	-	-	-	-	-	-	-
22	64,4	-	-	60,3	-	-	52,3	-	-	43,8	-	-
24	59,3	-	-	57,1	-	-	51,8	-	-	43,8	-	-
26	54,8	-	-	52,8	-	-	50,9	-	-	43,6	-	-
28	50,9	-	-	49,0	-	-	47,5	-	-	43,6	-	-
30	47,5	-	-	45,6	-	-	44,2	-	-	42,5	-	-
34	41,6	-	-	40,0	-	-	38,7	-	-	37,1	-	-
38	36,5	-	-	35,4	-	-	34,2	-	-	32,7	-	-
40	34,0	27,5	-	33,4	-	-	32,2	-	-	30,8	-	-
42	31,7	25,5	-	31,2	24,5	-	30,4	-	-	29,0	-	-
44	29,7	23,8	-	29,2	23,0	-	28,8	22,0	-	27,4	-	-
46	27,9	22,2	-	27,3	21,4	-	27,1	20,7	-	26,0	-	-
48	26,2	20,7	-	25,7	19,9	-	25,4	19,5	-	24,6	18,2	-
50	24,8	19,4	-	24,2	18,6	-	23,9	18,1	-	23,1	17,1	-
54	22,2	17,0	-	21,5	16,2	-	21,2	15,8	-	20,5	14,8	-
58	19,2	15,1	11,0	19,3	14,3	10,1	19,0	13,8	-	18,2	12,8	-
62	-	13,4	9,6	17,5	12,6	8,7	17,1	12,1	8,1	16,3	11,1	-
66	-	12,0	8,3	-	11,1	7,4	15,4	10,6	6,9	14,5	9,6	5,8
70	-	-	7,3	-	9,9	6,4	13,2	9,4	5,8	13,0	8,4	4,8
74	-	-	6,5	-	,	5,5	,	8,3	4,9	11,7	7,2	3,8
78	-	-	-	-	-	4,7	-	7,3	4,1	-	6,3	3,0
82	-	-	-	-	-	-	-	-	3,4	-	5,5	-
86	-	-	-	-	-	-	-	-	2,8	-	-	-

[^0]CC 2400-1

러핑 플라이 짚

	$160 t+40$	t ZB		마는ㅁ $7,25 \mathrm{~m}$					\& $9.8 \mathrm{~m} / \mathrm{s}$			360°			ISO
*1. 54 m															
	,	24 m		30 m			36 m			42 m			48 m		
$\underset{\sim}{3}$	- $87{ }^{\circ}-85^{\circ}$	75°	65°	$87^{\circ} 85^{\circ}$	75°	65°	$87^{\circ}-85^{\circ}$	75°	65°	$87^{\circ}-85^{\circ}$		65°	87^{-85}		65°
m	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t
12	127,5	-	-	-	.	-	-	-	.		-	.	-	-	-
13	119,5	-	-	114,5	-	-	-	-	-		-			-	
14	112,0	-	-	107,5	-	-	-	-	-	-	-	-	-	-	-
15	105,5	-	-	101,0	-	-	97,4	-	-		-		-	-	-
16	99,7	-	-	95,8	-	-	92,1	-	-	86,1	-	-	-	-	-
17	94,4	-	-	90,8	-	-	87,3	-	-	84,0	-	-	75,0	-	-
18	89,6	-	-	86,2	-	-	83,0	-	-	79,9	-	-	75,0	-	.
20	81,5	-	-	78,3	-	-	75,4	-	-	72,7	-	-	70,1	-	-
22	74,6	-	-	71,7	-	-	69,1	-	-	66,5	-	-	64,2	-	-
24	68,8	-	-	66,1	-	-	63,6	-	-	61,3	-	-	59,1	-	-
26	63,2	-	-	61,2	-	-	58,9	-	-	56,7	-	-	54,7	-	-
28	57,4	47,6	-	56,6	-	-	54,9	-	-	52,8	-	-	50,9	-	-
30	51,0	43,4	-	51,7	42,3	-	51,3	-	-	49,3	-	-	47,5	-	-
34	-	36,8	-	44,0	35,7	-	43,5	35,0	-	42,6	-	-	41,7	-	-
36	-	34,1	-	39,5	33,0	-	40,3	32,3	-	39,5	31,2	-	39,3	-	-
38	-	31,7	-	-	30,6	-	37,6	30,0	-	36,7	28,9	-	36,5	28,3	-
40	-	-	23,9	-	28,6	-	35,1	27,9	-	34,2	26,8	-	34,1	26,6	-
42	-	-	22,3	-	26,7	-	31,8	26,0	-	32,0	25,0	-	31,8	24,7	-
44	-	-	20,8	-	25,1	19,4	-	24,4	-	30,1	23,2	-	29,8	22,9	-
46	-	-	19,5	-	-	18,1	-	22,9	-	27,2	21,7	-	28,1	21,4	-
48	-	-	18,4	-	-	17,0	-	21,5	16,0	-	20,3	-	26,4	19,9	-
50	-	-	-	-	-	15,9	-	20,3	15,0	-	19,0	-	25,0	18,7	-
54	-	-	-	-	-	14,2	-	-	13,1	-	16,8	11,8	-	16,4	11,4
58	-	-	-	-	-	-	-	-	11,6	-	-	10,3	-	14,6	9,8
62	-	-	-	-	-	-	-	-	-	-	-	9,0	-	13,0	8,5
66	-	-	-	-	-	-	-	-	-	-	-	8,1	-	-	7,4
70	-	-	-	-	-	-	-	-	-	-	-	.	-	-	6,5

		54 m			60 m			66 m			72 m	
$\xrightarrow{3}$	$87^{\circ}-85^{\circ}$	75°	65°	$87^{\circ}-85^{\circ}$	75°	65°	$87^{\circ}-85^{\circ}$	75°	65°	$87^{\circ}-85$	75°	65°
m	t	t	t	t	t	t	t	t	t	t	t	t
19	64,6	-	-	-	-	-	-	-	-	-	-	-
20	64,6	-	-	56,0	-	-	-	-	-	-	-	-
22	62,1	-	-	56,0	-	-	48,4	-	-	-	-	-
24	57,2	-	-	54,8	-	-	48,4	-	-	41,7	-	-
26	52,9	-	-	50,9	-	-	47,6	-	-	41,4	-	-
28	49,2	-	-	47,3	-	-	45,8	-	-	40,7	-	-
30	45,9	-	-	44,1	-	-	42,6	-	-	40,1	-	-
34	40,3	-	-	38,6	-	-	37,3	-	-	35,8	-	-
38	35,7	-	-	34,2	-	-	33,0	-	-	31,5	-	-
42	31,4	23,8	-	30,5	-	-	29,4	-	-	28,0	-	-
44	29,4	22,3	-	28,9	21,0	-	27,8	-	-	26,5	-	-
46	27,6	20,7	-	27,1	19,8	-	26,3	18,7	-	25,0	-	-
48	26,0	19,3	-	25,4	18,5	-	25,0	17,6	-	23,7	16,3	-
50	24,5	18,0	-	23,9	17,2	-	23,6	16,6	-	22,5	15,3	-
54	21,9	15,8	-	21,3	15,0	-	21,0	14,5	-	20,2	13,5	-
58	18,8	13,9	9,1	19,1	13,1	-	18,8	12,6	-	18,0	11,6	-
62	-	12,3	7,8	17,2	11,5	6,9	16,8	11,0	-	16,0	10,0	-
66	-	10,9	6,7	-	10,1	5,8	15,2	9,6	5,2	14,2	8,6	-
70	-	-	5,7	-	8,9	4,8	12,8	8,4	4,2	12,7	7,3	-
74	-	-	4,9	-	7,9	3,9	-	7,3	3,4	11,4	6,3	-
78	-	-	-	-	-	3,2	-	6,4	2,6	-	5,4	-
82	-	-	-	-	-	2,6	-	-	-	-	4,6	-
86	-	-	-	-	-	-	-	-	-	-	3,9	-

Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}$ and 65°, capacities for intermediate boom positions are calculated by the crane control system IC-1 메인붐 각도 $87^{\circ}-85^{\circ}, 75^{\circ}$ 와 65°; 중간 붐 위치의 인양능력은 크레인 컨트롤 시스템 $\mathrm{IC}-1$ 으로 계산된다

CC 2400-1

러핑 플라이 짚

	$160 t+40$	t ZB		마는ㅁ $7,25 \mathrm{~m}$					\& $9.8 \mathrm{~m} / \mathrm{s}$			360°			ISO
*. 60 m															
	24 m			30 m			36 m			42 m			48 m		
$\underset{\leftrightarrow}{6}$	\% $877^{\circ}-85^{\circ}$	75°	65°	$87^{\circ} 85^{\circ}$	75°	65°	$87^{\circ}-85^{\circ}$	75°	65°	$87^{\circ}-85^{\circ}$		65°	87^{-85}	75°	65°
m	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t
12	119,5	-	-	-	.	-	-	.	.		-	.	.	-	-
14	107,0	-	-	102,5	-	-		-	-		-	-		-	
15	101,0	-	-	97,1	-	-	88,2	-	-	-	-	-	-	-	-
16	95,6	-	-	91,8	-	-	88,2	-	-	77,3	-	-	-	-	-
18	86,2	-	-	82,8	-	-	79,7	-	-	76,7	-	-	66,4	-	-
20	78,4	-	-	75,4	-	-	72,6	-	-	69,9	-	-	66,4	-	-
22	71,9	-	-	69,1	-	-	66,6	-	-	64,1	-	-	61,8	-	-
24	66,4	-	-	63,8	-	-	61,4	-	-	59,1	-	-	57,0	-	-
26	61,7	-	-	59,2	-	-	56,9	-	-	54,7	-	-	52,8	-	-
28	57,0	-	-	55,1	-	-	53,0	-	-	50,9	-	-	49,1	-	-
30	50,3	41,4	-	51,3	-	-	49,5	-	-	47,6	-	-	45,8	-	-
32	-	38,0	-	47,1	36,8	-	46,5	-	-	44,6	-	-	42,9	-	-
34	-	35,0	-	43,6	33,9	-	43,1	32,8	-	41,9	-	-	40,3	-	-
36	-	32,4	-	38,9	31,3	-	39,9	30,7	-	39,0	-	-	38,0	-	-
38	-	30,2	-	-	29,1	-	37,2	28,4	-	36,3	27,1	-	35,8	-	-
40	-	28,2	-	-	27,0	-	34,8	26,3	-	33,8	25,1	-	33,7	24,3	-
42	-	-	-	-	25,3	-	31,2	24,5	-	31,6	23,2	-	31,5	22,9	-
44	-	-	18,3	-	23,6	-	-	22,8	-	29,7	21,6	-	29,5	21,3	-
46	-	-	17,1	-	22,2	15,7	-	21,3	-	28,0	20,1	-	27,7	19,8	-
48	-	-	16,0	-	-	14,6	-	20,0	-	25,2	18,7	-	26,1	18,5	-
50	-	-	15,0	-	-	13,6	-	18,8	12,7	-	17,5	-	24,7	17,2	-
54	-	-	,	-	-	11,9	-	-	11,0	-	15,4	9,6	21,1	15,1	-
58	-	-	-	-	-	-	-	-	9,6	-	13,8	8,2	-	13,3	7,8
62	-	-	-	-	-	-	-	-	8,5	-	-	7,1	-	11,8	6,6
66	-	-	-	-	-	-	-	-	-	-	-	6,2	-	-	5,6
70	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4,8
74	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4,1

0	54 m			60 m			66 m			72 m		
	$87^{\circ}-85^{\circ}$	75°	65°	$87^{\circ}-85^{\circ}$	75°	65°	$87^{\circ}-85^{\circ}$	75°	65°	$87^{\circ}-85$	75°	65°
m	t	t	t	t	t	t	t	t	t	t	t	t
19	58,1	-	-	-	-	-	-	-	-	-	-	-
20	58,1	-	-	50,0	-	-	-	-	-	-	-	-
22	57,4	-	-	50,0	-	-	43,5	-	-	-	-	-
24	55,0	-	-	49,5	-	-	43,5	-	-	37,4	-	-
26	51,0	-	-	48,4	-	-	42,8	-	-	37,4	-	-
28	47,4	-	-	45,6	-	-	42,0	-	-	36,8	-	-
30	44,2	-	-	42,5	-	-	41,1	-	-	36,4	-	-
34	38,9	-	-	37,3	-	-	36,0	-	-	34,4	-	-
38	34,5	-	-	33,0	-	-	31,8	-	-	30,4	-	-
42	30,9	21,6	-	29,4	-	-	28,3	-	-	27,0	-	-
46	27,3	19,2	-	26,4	17,8	-	25,4	-	-	24,1	-	-
48	25,7	17,8	-	25,1	16,8	-	24,1	15,7	-	22,8	-	-
50	24,2	16,6	-	23,6	15,8	-	22,9	14,8	-	21,6	13,4	-
54	21,6	14,4	-	21,0	13,6	-	20,7	13,1	-	19,4	11,8	-
58	18,4	12,6	-	18,8	11,8	-	18,5	11,4	-	17,6	10,3	-
62	-	11,1	5,9	17,0	10,3	-	16,6	9,8	-	15,7	8,8	-
66	-	9,8	4,9	-	8,9	4,0	14,9	8,5	-	14,0	7,4	-
70	-	8,7	4,0	-	7,8	3,1	12,4	7,3	-	12,5	6,3	-
74	-	-	3,3	-	6,8		-	6,3	-	11,2	5,3	-
78	-	-	2,7	-	-	-	-	5,4	-	-	4,4	-
82	-	-	-	-	-	-	-	-	-	-	3,6	-
86	-	-	-	-	-	-	-	-	-	-	3,0	-

[^1]
러핑 플라이 짚

Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}$ and 65°, capacities for intermediate boom positions are calculated by the crane control system IC-1 메인붐 각도 $87^{\circ}-85^{\circ}, 75^{\circ}$ 와 65°; 중간 붐 위치의 인양능력은 크레인 컨트롤 시스템 $\mathrm{IC}-1$ 으로 계산된다

CC 2400-1

러핑 플라이 짚

	$160 t+40$	t ZB							$1.8 .8 \mathrm{~m} / \mathrm{s}$			360°			ISO
\% 72 m															
	\%	24 m			30 m	,		36 m	I		42 m			48 m	1
U	\% $877^{\circ}-85^{\circ}$	75°	65°	$87^{\circ} 85^{\circ}$	75°	65°	$87^{\circ}-85^{\circ}$	75°	65°	$87^{\circ} 85^{\circ}$	75°	65°	$87^{\circ}-85^{\circ}$	$\left\llcorner^{7}{ }^{\circ}\right.$	65°
m	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t
13	89,8	-	-	-	.	.	-	-	-	-	-	-	-		
14	89,8	-	-	78,6	-	-	-	-	-	-	-	-	-	-	-
16	87,8	-	-	78,6	-	-	67,8	-	-	-	-	-	-	-	-
17	83,4	-	-	77,3	-	-	67,8	-	-	59,7	-	-	-	-	-
18	79,5	-	-	76,1	-	-	67,8	-	-	59,7	-	-	51,8	-	-
20	72,5	-	-	69,7	-	-	65,9	-	-	58,9	-	-	51,8	-	-
22	66,7	-	-	64,1	-	-	61,6	-	-	57,4	-	-	51,2	-	-
24	61,7	-	-	59,2	-	-	57,0	-	-	54,8	-	-	50,0	-	-
26	57,4	-	-	55,1	-	-	52,9	-	-	50,8	-	-	48,7	-	-
28	53,8	-	-	51,4	-		49,3	-	-	47,4	-	-	45,6	-	-
30	47,6	-	-	48,2	-	-	46,2	-	-	44,3	-	-	42,6	-	-
34	.	30,9	-	42,6	-	-	40,9	-	-	39,1	-	-	37,5	-	-
36	-	28,8	-	37,5	27,3	-	38,6	-	-	36,9	-	-	35,3	-	-
38	-	26,7	-	-	25,3	-	36,4	24,1	-	34,9	-	-	33,4	-	-
40	-	24,7	-	-	23,4	-	33,9	22,6	-	33,0	21,1	-	31,6	-	-
42	-	23,0	-	-	21,7	-	30,0	20,9	-	30,9	19,6	-	29,9	-	-
44	-	21,5	-	-	20,2	-	-	19,4	-	28,9	18,1	-	28,4	17,4	-
46	-	.	-	-	18,8	-	-	18,1	-	27,2	16,8	-	27,1	16,4	-
48	-	-	11,1	-	17,6	-	-	16,8	-	24,1	15,5	-	25,5	15,3	-
50	-	-	10,3	-	16,6	-	-	15,7	-	-	14,4	-	24,0	14,2	-
54	-	-	8,9	-	-	7,5	-	13,8	-	-	12,5	-	20,1	12,3	-
58	-	-	-	-	-	6,3	-	-	5,4	-	10,9	4,0	-	10,6	-
62	-	-	-	-	-	5,5	-	-	4,5	-	-	3,1	-	9,3	-
64	-	-	-	-	-	.	-	-	4,1	-	-	2,7	-	8,7	-
66	-	-	-	-	-	-	-	-	3,8	-	-	.	-	8,1	-

	54 m			60 m			66 m			72 m		
\circlearrowright	$187^{\circ}-85^{\circ}$	75°	65°	$87^{\circ}-85^{\circ}$	75°	65°	$87^{\circ}-85$	75°	65°	$87^{\circ}-85$	75°	65°
m	t	t	t	t	t	t	t	t	t	t	t	t
20	45,5	-	-	-	-	-	-	-	-	-	-	-
22	45,5	-	-	39,4	-	-	34,7	-	-	-	-	-
24	44,5	-	-	39,4	-	-	34,7	-	-	29,5	-	-
26	44,1	-	-	38,7	-	-	34,4	-	-	29,5	-	-
28	42,5	-	-	38,2	-	-	33,8	-	-	29,3	-	-
30	41,0	-	-	37,1	-	-	33,8	-	-	28,8	-	-
34	36,1	-	-	34,5	-	-	31,9	-	-	28,3	-	-
38	32,1	-	-	30,6	-	-	29,4	-	-	26,7	-	-
42	28,7	-	-	27,3	-	-	26,2	-	-	24,8	-	-
46	25,8	15,1	-	24,5	-	-	23,5	-	-	22,1	-	-
48	24,6	14,2	-	23,2	12,8	-	22,2	-	-	20,9	-	-
50	23,4	13,4	-	22,1	12,0	-	21,1	11,0	-	19,8	-	-
54	21,0	11,6	-	20,0	10,5	-	19,1	9,6	-	17,8	8,2	-
58	18,9	10,0	-	18,2	9,2	-	17,3	8,3	-	16,1	7,0	-
62	,	8,6	-	16,4	7,8	-	15,7	7,2	-	14,5	5,8	-
66	-	7,4	-	13,4	6,6	-	14,3	6,2	-	13,1	4,7	-
70	-	6,4	-	-	5,6	-	12,9	5,1	-	11,9	3,9	-
74	-	-	-	-	4,7	-	-	4,2	-	10,7	3,1	-
78	-	-	-	-	4,0	-	-	3,4	-	8,3	-	-
82	-	-	-	-	-	-	-	2,7	-	-	-	-
86	-	-	-	-	-	-	-	-	-	-	-	-

Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}$ and 65°, capacities for intermediate boom positions are calculated by the crane control system IC-1 메인붐 각도 $87^{\circ}-85^{\circ}, 75^{\circ}$ 와 65°; 중간 붐 위치의 인양능력은 크레인 컨트롤 시스템 $\mathrm{IC}-1$ 으로 계산된다

수퍼리프트와 러핑 플라이 짚

Q TEREX

수퍼리프트와 러핑 플라이 짚

수퍼리프트와 러핑 플라이 짚

	$160 t+40$	t ZB		9-15 m		다는ㅁ $7,25 \mathrm{~m}$			2 $9.8 \mathrm{~m} / \mathrm{s}$		360°		ISO
$36 \mathrm{~m}+84 \mathrm{~m}$							\% $42 \mathrm{~m}+36 \mathrm{~m}$						
		0t-240t							0t-240t				
		9m-15m							9m-15m				
		$87^{\circ}-85^{\circ}$	75°	65°	55°	45°			$87^{\circ} 85^{\circ}$	75°	65°	55°	45°
m	t	t	t	t	t	t	m	t	t	t	t	t	t
26	-	37,1*	-	.	.	-	14	-	149,0*	-	-	-	-
28	-	36,4*	-	-	-	-	16	-	148,5*	-	-	-	-
30	-	36,0	-	-	-	-	17	97,5	151,5	-	-	-	-
34	-	34,8	-	-	-	-	18	92,5	151,5	-	-		-
38	-	33,6	-	-	-	-	20	83,8	148,5	-	-	-	-
42	-	32,3	-	-	-	-	22	76,5	143,5	-	,		
46	-	31,3	-	-	-	-	24	70,3	137,5	-	-	-	-
50	-	30,3	30,9	-	-	-	26	64,4	129,5	-	-	-	-
54	-	29,4	30,3	-	-	-	28	58,4	122,5	-	-	-	.
58	-	28,4	29,6	-	-	-	30	53,4	115,5	126,5	-	-	-
62	-	27,4	28,9	-	-	-	34	45,3	95,9	109,5	-	-	-
66	-	26,2	28,3	-	-	-	38	39,2	76,9	96,3	-	-	-
70	-	25,0	27,6	26,6	-	-	40	36,7	67,7	90,8	-	-	-
74	-	23,8	27,0	26,3	-	-	42	-	-	85,8	82,2	-	-
78	-	22,6	26,1	25,9	-	-	46	-	-	77,2	73,9	-	-
82	-	21,4	25,1	25,4	-	-	48	-	-	69,1	70,3	-	-
86	-	18,9	24,2	25,0	23,7	-	50	-	-	-	67,0	-	-
90	-	-	22,7	23,9	23,7	-	54	-	-	-	61,3	59,3	-
94	-	-	-	22,9	23,6	-	58	-	-	-		54,5	.
98	-	-		21,8	23,1	20,5							
102	-	-	-	-	22,2	20,4	$42 \mathrm{~m}+48 \mathrm{~m}$						
106	-	-	-	-	-	19,7							
110	-	-	-	-	-	-	m17	t	$\begin{gathered} \mathrm{t} \\ 106,0^{*} \end{gathered}$	t.	t	t	t
$42 m+24 m$							$\begin{aligned} & 18 \\ & 20 \end{aligned}$	78,0	106,0* 106,5	-	- -		
m	t	t	t	t	t	t	22	71,2	$105,5$	-	- -		
11	-	190,0*	-	-	-	-	24	65,5	103,0	.	-	-	-
12	-	190,0*	-	-	-	-	26	60,5	99,6	-	- -		-
14	126,0	190,0*	-	-	-	-	28	56,2	95,5	-	-	-	
16	111,5	190,0*	-	-	-	-	3034	52,3	91,3	-	- -		-
18	99,9	190,0*	-	-	-	-		44,3	83,0		-	-	
20	90,4	190,0	-	-	-	-	36	41,0	78,874,7	92,6	-	-	-
22	81,6	171,0	-	-	-	-	38	38,1		92,6 90,5			-
24	72,9	150,5	-	-	-	-	42	33,3	67,9	82,6	-	-	-
26	65,8	134,0	151,0	-	-	-	46	29,4	60,3	74,3	-	-	-
28	59,8	113,5	138,5	-	-	-	5054	26,2	50,3	$\begin{aligned} & 66,3 \\ & 60,2 \end{aligned}$	$\begin{aligned} & 64,9 \\ & 59,2 \end{aligned}$	-	-
30	-	-	128,0	-	-	-		-	-				
34	-	-	110,5	-	-	-	58	-		52,0	$\begin{aligned} & 54,4 \\ & 50,2 \end{aligned}$	48,4	-
36	-	-	103,5	99,9	-	-	62	-					
38	-	-		93,9	-	-	66	-	-	-	46,6	$\begin{aligned} & 40,4 \\ & 44,8 \\ & 41,7 \end{aligned}$	-
42	-	-	.	83,7	-	-		-					
46	-	-	-	-	73,3	-	7478	-	$-$	-	-	-	$\begin{aligned} & 34,2 \\ & 32,7 \end{aligned}$
48	-	-	-	-	69,8	-		-					

* Main boom angle 87°. 메인붐 각도 87°

Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and 45°, capacities for intermediate boom positions are calculated by the crane control system IC-1 메인붐 각도 $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ 와 45°; 중간 붐 위치의 인양능력은 크레인 컨트롤 시스템 IC-1 으로 계산된다

수퍼리프트와 러핑 플라이 짚

	$t+40$	t ZB		9-15 m		ㄷ-6-1 7,25 m			$12.8 \mathrm{~m} / \mathrm{s}$		360°		150
$42 \mathrm{~m}+60 \mathrm{~m}$							$42 \mathrm{~m}+84 \mathrm{~m}$						
		0t-240t							0t-240t				
		$9 \mathrm{~m}-15 \mathrm{~m}$									m-15		
		$87^{\circ}-85^{\circ}$	75°	65°	55°	45°			$87^{\circ}-85^{\circ}$		65°	55°	45°
m	t	t	t	t	t	t	m	t	t	t	t	t	t
19	-	76,2*	-	-	-	-	26	-	36,0*	-	-	-	-
20	-	76,2*	-	-	-	-	28	-	35,4*	-	-	-	-
22	-	74,7*	-	-	-	-	30	33,5	35,0	-	-	-	-
24	61,1	75,1	-	-	-	-	34	32,9	34,1	-	-	-	-
26	56,5	73,6	-	-	-	-	38	32,0	32,9	-	-	-	-
28	52,4	72,2	-	-	-	-	42	28,7	31,8	-	-	-	-
30	48,8	70,7	-	-	-	-	46	25,5	30,8	-	-	-	-
34	42,7	67,7	-	-	-	-	50	22,8	29,9	29,8	-	-	-
38	37,1	64,5	-	-	-	-	54	20,5	28,9	29,5	-	-	-
40	34,5	62,9	66,6	-	-	-	58	18,2	28,0	28,8	-	-	-
42	32,2	61,3	66,6	-	-	-	62	16,0	27,1	28,2	-	-	-
46	28,3	58,1	64,6	-	-	-	66	14,1	26,2	27,6	-	-	-
50	25,1	54,0	61,8	-	-	-	70	12,3	25,2	27,1	25,7	-	-
54	22,4	48,6	58,2	-	-	-	74	10,8	24,2	26,6	25,7	-	-
58	20,1	42,0	54,7	53,2	-	-	78	9,5	23,2	25,8	25,6	-	-
62	18,2	35,6	49,9	49,0	-	-	82	8,3	22,1	24,7	25,2	-	-
66	-	-	43,6	45,3	-	-	86	7,2	18,7	23,6	24,9	-	-
70	-	-	37,3	42,1	36,6	-	90	-	-	22,5	24,3	23,1	-
74	-	-		39,3	35,8	-	94	-	-	20,1	23,4	23,1	-
78	-	-	-	36,8	34,2	-	98	-	-	-	22,4	23,1	-
82	-	-	-		32,7	28,7	102	-	-	-	,	22,3	19,3
86	-	-	-	-	-	28,1	106	-	-	-	-	21,0	19,2
90	-	-	-	-	-	26,9	110	-	-	-	-	-	18,5
$42 \mathrm{~m}+72 \mathrm{~m}$							$48 \mathrm{~m}+24 \mathrm{~m}$						
m	t	t	t	t	t	t	m	t	t	t	t	t	t
22	-	51,9*	-	-	-	-	12	141,5*	185,0*	-	-	-	-
24	-	51,5*	-	-	-	-	14	123,5*	185,0*	-	-	-	-
26	48,9	51,0	-	-	-	-	16	109,5*	185,0	-	-	-	-
28	48,9	50,7	-	-	-	-	18	98,4*	185,0	-	-	-	-
30	45,5	49,9	-	-	-	-	20	89,2*	180,0	-	-	-	-
34	39,8	48,5	-	-	-	-	22	81,6*	172,5	-	-	-	-
38	35,1	47,0	-	-	-	-	24	73,8*	155,0	-	-	-	-
42	31,2	45,7	-	-	-	-	26	66,6*	137,5	149,0	-	-	-
46	27,2	44,4	45,7	-	-	-	28	60,6*	120,0	137,0	-	-	-
50	24,0	43,2	45,1	-	-	-	30	-	-	126,5	-	-	-
54	21,3	42,0	44,3	-	-	-	34	-	-	109,5	-	-	-
58	19,0	39,8	43,5	-	-	-	38	-	-	96,3	91,9	-	-
62	16,9	37,3	42,6	-	-	-	42	-	-	-	81,9	-	-
66	15,0	34,6	41,8	40,4	-	-	46	-	-	-	73,7	-	-
70	13,4	30,2	40,0	40,4	-	-	48	-	-	-	-	67,7	-
74	12,0	25,7	35,9	38,0	-	-	50	-	-	-	-	64,5	-
78			31,6	35,5	-	-	54	-	-	-	-	-	-
82	-	-	27,2	33,2	30,6	-							
86	-	-		31,2	29,4	-							
90	-	-	-	-	27,9	-							
94	-	-	-	-	26,3	24,0							
98	-	-	-	-		23,0							
102	-	-	-	-	-								

* Main boom angle 87°. 메인붐 각도 87°

Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and 45°, capacities for intermediate boom positions are calculated by the crane control system IC-1 메인붐 각도 $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ 와 45°; 중간 붐 위치의 인양능력은 크레인 컨트롤 시스템 IC-1 으로 계산된다

수퍼리프트와 러핑 플라이 짚

[^2]Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and 45°, capacities for intermediate boom positions are calculated by the crane control system IC-1 메인붐 각도 $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ 와 45°; 중간 붐 위치의 인양능력은 크레인 컨트롤 시스템 IC-1 으로 계산된다

수퍼리프트와 러핑 플라이 짚

[^3]| | $160 t+40$ | ZB | | 9-15 m | | 다-6 $7,25 \mathrm{~m}$ | | | D $9.8 \mathrm{~m} / \mathrm{s}$ | | | | ISO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - $54 \mathrm{~m}+60 \mathrm{~m}$ | | | | | | | 明 $54 \mathrm{~m}+84 \mathrm{~m}$ | | | | | | |
| | | 0t-240t | | | | | | | 0t-240t | | | | |
| | H 9m | $9 \mathrm{~m}-15 \mathrm{~m}$ | | | | | | | 9m-15m | | | | |
| | $87^{\circ}-85^{\circ}$ | $87^{\circ}-85^{\circ}$ | 75° | 65° | 55° | 45° | | | $87^{\circ}-85^{\circ}$ | | 65° | 55° | 45° |
| m | t | t | t | t | t | t | m | t | t | t | t | t | t |
| 20 | 64,5* | 66,6* | - | . | - | . | 26 | 31,1* | 32,8* | - | - | - | . |
| 22 | 63,5* | 66,0* | - | - | - | - | 28 | 31,1* | 32,6* | - | - | - | - |
| 24 | 58,6* | 66,5 | - | - | - | - | 30 | 30,9 | 32,1* | . | - | - | - |
| 26 | 54,2* | 66,1 | - | - | - | - | 34 | 30,8 | 31,7 | - | - | | - |
| 28 | 50,4* | 65,2 | - | - | - | - | 38 | 29,7 | 30,9 | - | - | - | - |
| 30 | 47,0* | 64,2 | - | - | - | - | 42 | 27,7* | 29,9 | - | - | - | |
| 34 | 41,3* | 61,9 | - | - | . | - | 46 | 24,7* | 29,1 | . | . | - | - |
| 38 | 36,6* | 59,3 | - | - | - | - | 50 | 22,1* | 28,3 | - | - | - | - |
| 42 | 32,6* | 56,8 | - | - | - | - | 54 | 19,8* | 27,5 | 27,6 | - | - | - |
| 44 | 30,5* | 55,5 | 60,7 | - | - | - | 58 | 17,8* | 26,7 | 27,4 | - | - | - |
| 46 | 28,6* | 54,2 | 60,5 | - | - | - | 62 | 16,1* | 26,0 | 27,1 | - | - | - |
| 50 | 25,3* | 51,5 | 59,2 | - | - | - | 66 | 14,5* | 25,2 | 26,8 | - | - | - |
| 54 | 22,6* | 48,4 | 57,2 | - | - | - | 70 | 12,8* | 24,5 | 26,3 | - | - | - |
| 58 | 20,3* | 44,0 | 54,2 | - | - | - | 74 | 11,3* | 23,8 | 25,8 | - | - | - |
| 62 | 18,3* | 37,7 | 49,9 | 46,2 | - | - | 78 | 9,9* | 23,0 | 25,4 | 23,9 | - | - |
| 66 | - | - | 46,2 | 42,7 | - | - | 82 | 8,7* | 22,3 | 24,6 | 23,9 | - | - |
| 70 | - | - | 42,4 | 39,6 | - | - | 86 | 7,6* | 20,0 | 23,7 | 23,8 | - | - |
| 74 | - | - | 36,1 | 36,9 | | - | 90 | - | - | 22,8 | 23,8 | | |
| 78 | - | - | - | 34,5 | 32,2 | - | 94 | - | - | 21,9 | 23,8 | 20,2 | - |
| 82 | - | - | - | 32,4 | 30,1 | - | 98 | - | - | - | 23,1 | 20,2 | - |
| 86 | - | - | - | , | 28,2 | - | 102 | - | - | . | 21,9 | 19,9 | - |
| 90 | - | - | - | - | 26,6 | - | 106 | - | - | - | 20,6 | 18,7 | - |
| 94 | - | - | - | - | - | 23,0 | 110 | - | - | - | , | 17,6 | - |
| 98 | - | - | - | - | | 21,8 | 114 | - | - | - | - | 16,6 | 14,4 |
| 102 | - | - | - | - | - | - | $\begin{array}{\|l\|} \hline 118 \\ \hline 122 \end{array}$ | - | - | - | - | - | 13,4 |
| - $54 \mathrm{~m}+72 \mathrm{~m}$ | | | | | | | | - | - | - | - - | | 12,5 |
| | | | | | | | 126 - | | | | | | |
| m | $\begin{gathered} t \\ 44,6 \end{gathered}$ | $\stackrel{t}{\text { t }}$ 46, ${ }^{\text {* }}$ | . | t. | t | . | 60 m 24 m | | | | | | |
| 26 | 44,4* | 46,1* | - | - | - | - | m | t | t | t | t | t | t |
| 28 | 44,8 | 46,1 | - | - | - | - | 12 | 128,5* | 154,0* | . | . | . | . |
| 30 | 43,7* | 45,9 | - | - | - | - | 14 | 113,0* | 152,0* | - | - | - | - |
| 34 | 38,4* | 44,7 | - | - | - | - | 16 | 101,0* | 155,5 | - | - | - | - |
| 38 | 33,9* | 43,6 | - | - | - | - | 18 | 91,1* | 151,0 | - | - | - | - |
| 42 | 30,2* | 42,6 | - | - | - | - | 20 | 83,0* | 145,5 | - | - | - | - |
| 46 | 27,0* | 41,6 | - | - | - | - | 22 | 76,1* | 140,0 | - | - | - | |
| 48 | 25,6* | 41,1 | 42,0 | - | - | - | 24 | 70,3* | 134,5 | - | - | - | - |
| 50 | 24,3* | 40,6 | 42,0 | - | - | - | 26 | 65,4* | 128,5 | - | - | - | - |
| 54 | 21,5* | 39,6 | 41,8 | - | - | - | 28 | 59,6* | 121,5 | - | - | - | - |
| 58 | 19,2* | 38,2 | 41,3 | - | - | - | 30 | 52,8 | 110,5 | 123,0 | - | - | - |
| 62 | 17,2* | 36,4 | 40,7 | - | - | - | 34 | - | - | 106,0 | - | - | - |
| 66 | 15,3* | 34,6 | 40,1 | - | - | - | 38 | - | - | 93,6 | - | - | - |
| 70 | 13,8* | 31,6 | 39,4 | 36,5 | - | - | 40 | - | - | 88,2 | - | - | - |
| 74 | 12,3* | 27,2 | 37,6 | 35,6 | - | - | 44 | - | - | - | 73,7 | - | - |
| 78 | - | - | 35,1 | 33,2 | - | - | 46 | - | - | - | 70,0 | - | - |
| 82 | - | - | 30,9 | 31,0 | - | - | 50 | - | - | - | 63,5 | - | - |
| 86 | - | - | 26,4 | 29,1 | 26,8 | - | 54 | - | - | - | - | - | - |
| 90 | - | - | - | 27,3 | 25,1 | - | | | | | | | |
| 94 | - | - | - | 25,7 | 23,6 | - | | | | | | | |
| 98 | - | - | - | - | 22,2 | - | | | | | | | |
| 102 | - | - | - | - | 21,0 | 19,0 | | | | | | | |
| 106 | - | - | - | - | - | 17,9 | | | | | | | |
| 110 | - | - | - | - | - | 17,0 | * Main bo | boom angle 8 | 7°. 메인붐 | 각도 8 | | | |

Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and 45°, capacities for intermediate boom positions are calculated by the crane control system IC-1 메인붐 각도 $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ 와 45°; 중간 붐 위치의 인양능력은 크레인 컨트롤 시스템 IC-1 으로 계산된다

수퍼리프트와 러핑 플라이 짚

* Main boom angle 87°. 메인붐 각도 87°

7,25 m		D $9.8 \mathrm{~m} / \mathrm{s}$				ISO
6, $60 \mathrm{~m}+60 \mathrm{~m}$						
		0t-240t				
		9m-15m				
		$87^{\circ}-85^{\circ}$	75°	65°	55°	45°
m	t	t	t	t	t	t
20	59,5*	61,3*	-	-	-	-
22	59,5*	61,0*	-	-	-	-
24	56,4*	61,5	-	-	-	-
26	52,3*	61,5	-	-	-	-
28	48,6 *	60,7	-	-	-	-
30	45,4*	59,9	-	-	-	-
34	39,9*	58,0	-	-	-	-
38	35,4 *	55,8	-	-	-	-
42	31,6*	53,6	-	-	-	-
46	28,3*	51,4	56,5	-	-	-
50	25,0*	49,0	55,8	-	-	-
54	22,3*	46,5	54,6	-	-	-
58	20,0*	44,0	52,7	-	-	-
62	18,1*	38,6	49,0	-	-	-
66	-	-	45,3	41,3	-	-
70	-	-	42,1	38,3	-	-
74	-	-	38,7	35,6	-	-
78	-	-	-	33,3	-	-
82	-	-	-	31,2	28,5	-
86	-	-	-	-	26,7	-
90	-	-	-	-	25,1	-
94	-	-	-	-	23,7	-
98	-	-	-	-	-	20,1
102	-	-	-	-	-	19,0

$60 \mathrm{~m}+72 \mathrm{~m}$						
m	t	t	t	t	t	t
24	41,8*	43,6*	-	-	-	-
26	41,6*	43,1*	-	-	-	-
28	42,0	43,2	-	-	-	-
30	41,0*	43,0	-	-	-	-
34	37,0 *	42,1	-	-	-	-
38	32,7*	41,2	-	-	-	-
42	29,1 *	40,3	-	-	-	-
46	26,1*	39,5	-	-	-	-
50	23,4*	38,6	39,6	-	-	-
54	21,2*	37,8	39,6	-	-	-
58	19,0*	36,7	39,5	-	-	-
62	16,9 *	35,0	39,1	-	-	-
66	15,1 *	33,3	38,6	-	-	-
70	13,5*	31,6	38,2	33,8	-	-
74	12,1 *	27,9	37,1	33,8	-	-
78	-	-	35,4	31,9	-	-
82	-	-	32,5	29,8	-	-
86	-	-	28,3	27,9	-	-
90	-	-	-	26,2	23,7	-
94	-	-	-	24,6	22,2	-
98	-	-	-	-	20,9	-
102	-	-	-	-	19,7	-
106	-	-	-	-	18,6	16,1
110	-	-	-	-	-	15,1
114	-	-	-	-	-	14,1

Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and 45°, capacities for intermediate boom positions are calculated by the crane control system IC- 1 메인붐 각도 $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ 와 45°; 중간 붐 위치의 인양능력은 크레인 컨트롤 시스템 IC-1 으로 계산된다

수퍼리프트와 러핑 플라이 짚

* Main boom angle 87°. 메인붐 각도 87°

Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and 45°, capacities for intermediate boom positions are calculated by the crane control system IC-1 메인붐 각도 $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ 와 45°; 중간 붐 위치의 인양능력은 크레인 컨트롤 시스템 IC-1 으로 계산된다

수퍼리프트와 러핑 플라이 짚

	$160 t+40$	t ZB		9-15 m		다-냄,25 m			2 $9.8 \mathrm{~m} / \mathrm{s}$				ISO						
$66 \mathrm{~m}+60 \mathrm{~m}$							$66 \mathrm{~m}+84 \mathrm{~m}$												
		0t-240 t							0t-240 t										
		9m-15m							9m-15m										
		$87^{\circ}-85^{\circ}$	75°	65°	55°	45°			$87^{\circ}-85^{\circ}$	75°	65°	55°	45°						
m	t	t			t	t	m		,	t	t	t	t						
22	53,9*	55,8*	-	-	-	.	26	27,3*	28,4*	-	-	-	-						
24	53,7*	55,1*	-	-	-	-	28	27,3*	28,4*	-	-	-	-						
26	50,4*	56,1	-	-	-	-	30	27,1*	28,0*	-	-	-	-						
28	46,9*	55,4	-	-	-	-	34	27,2	27,9	-	-	-	-						
30	43,8*	54,8	-	-	-	-	38	26,8	27,3	-	-	-	-						
34	38,5*	53,2	-	-	-	-	42	25,6*	26,7	-	-	-	-						
38	34,2*	51,4	-	-	-	-	46	22,8*	26,1	-	-	-	-						
42	30,6*	49,5	-	-	-	-	50	20,4*	25,5	-	-	-	-						
46	27,5*	47,5	52,1	-	-	-	54	18,2*	24,9	-	-	-	-						
50	24,8*	45,5	52,0	-	-	-	58	16,4*	24,3	24,8	-	-	-						
54	22,1*	43,4	51,4	-	-	-	62	14,7*	23,7	24,7	-	-	-						
58	19,8*	41,2	50,0	-	-	-	66	13,2*	23,1	24,5	-	-	-						
62	17,8*	39,0	48,1	-	-	-	70	11,9*	22,3	24,3	-	-	-						
66	15,0	32,9	44,5	38,4	-	-	74	10,7*	21,6	24,0	-	-	-						
70	,0	,	41,3	37,0	-	.	78	9,5 *	20,9	23,7	-	-	-						
74	-	-	38,5	34,4	-	-	82	8,3*	20,2	23,4	21,1	-	-						
78	-	-	-	32,1	-	-	86	7,2*	19,5	23,0	21,1	-	-						
82	-	-	-	30,0	-	-	90	,	.	22,4	21,1	-	-						
86	-	-	-	28,2	25,3	-	94	-	-	21,8	21,1	-	-						
90	-	-	-	-	23,7	-	98	-	-	21,2	21,1	\checkmark	-						
94	-	-	-	-	22,3	-	102	-	-	-	19,9	17,1	-						
98	-	-	-	-	21,0	-	106	-	-	-	18,7	15,8	-						
102	-	-	-	-	,	17,3	110	-	-	-	17,7	14,7	-						
106	-	-	-	-	-	16,2	114	-	-	-	-	13,7	-						
110	-	-	-	-	-	,	118	-	-	-	-	12,7	-						
							122	-	-	-	-	-	8,9						
$66 \mathrm{~m}+72 \mathrm{~m}$							126	-	-	-	-	-	8,2						
							$\begin{aligned} & 130 \\ & 134 \end{aligned}$	-	-	-	-	-	7,5						
m	t	t	t	t	t	t													
24	38,8*	40,3*	-	-	-	-	$72 \mathrm{~m}+24 \mathrm{~m}$												
26	38,8*	40,0*	-	-	-	-													
28	39,1 *	40,1	-	-	-	-													
30	38,3*	40,1	-	-	-	-	m	t	,	t	t	t	t						
34	35,7*	39,4	-	-	-	-	13	110,0*	116,0*	-	-	-	-						
38	31,5*	38,7	-	-	-	-	14	103,5*	114,5*	-	-	-	-						
42	28,1*	37,9	-	-	-	-	16	93,0 *	115,5	-	-	-	-						
46	25,1*	36,9	-	-	-	-	18	84,3*	113,5	-	-	-	-						
50	22,6*	36,1	-	-	-	-	20	76,9*	110,0	-	-	-	-						
54	20,4*	35,2	37,2	-	-	-	22	70,8*	106,0	-	-	-	-						
58	18,5*	34,2	37,2	-	-	-	24	65,5*	102,0	-	-	-	-						
62	16,6*	32,7	37,0	-	-	-	26	61,0*	98,5	-	-	-	-						
66	14,8*	31,3	36,5	-	-	-	28	57,1*	94,9	-	-	-	-						
70	13,3*	29,8	36,1	-	-	-	30	50,8	91,5	-	-	-	-						
74	11,8*	28,3	35,7	31,3	-	-	34	-	-	103,0	-	-	-						
78	-	-	34,4	30,7	-	-	38	-	-	90,5	-	-	-						
82	-	-	32,5	28,7	-	-	42	-	-	80,6	-	-	-						
86	-	-	30,0	26,8	-	-	44	-	-	76,3	-	-	-						
90	-	-	-	25,1	-	-	48	-	-	,	62,8	-	-						
94	-	-	-	23,6	20,8	-	50	-	-	-	59,8	-	-						
98	-	-	-	22,2	19,5	-	54	-	-	-	54,6	-	-						
102	-	-	-	-	18,4	-	62	-	-	-	-	42,4	-						
106	-	-	-	-	17,3	-	66	-	-	-	-	39,3	-						
110	-	-	-	-	16,3	13,1													
114	-	-	-	-	-	12,2													
118	-	-	-	-	-	11,4													
122	-	-	-	-															

* Main boom angle 87°. 메인붐 각도 87°

Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and 45°, capacities for intermediate boom positions are calculated by the crane control system IC-1 메인붐 각도 $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ 와 45°; 중간 붐 위치의 인양능력은 크레인 컨트롤 시스템 IC-1 으로 계산된다

수퍼리프트와 러핑 플라이 짚

	+ 40 t	Z 7		9-15 m		다ㄴㅐㅐㅐ, $7,25 \mathrm{~m}$			D $9.8 \mathrm{~m} / \mathrm{s}$		360°		ISO
$72 m+36 m$							$72 \mathrm{~m}+60 \mathrm{~m}$						
	0 t	0t-240t					$\begin{array}{\|ccc} & & 0 \mathrm{t} \\ & & 9 \mathrm{~m} \\ \hdashline & & 87^{\circ}-85^{\circ} \end{array}$		0t-240t				
	9 m	9m-15m							9m-15m				
	$87^{\circ}-85^{\circ}$	$87^{\circ}-85^{\circ}$	75°	65°	55°	45°			$87^{\circ}-85^{\circ}$	75°	65°	55°	45°
m	t	t	t	t	t	t	m	t	t	t	t	t	t
16	83,5*	87,2*	-	-	-	.	22	48,0*	50,1*
18	78,0*	85,1*	-	-	-	-	24	47,7*	49,2*	-	-	-	-
20	71,3*	87,1	-	-	-	-	26	47,2*	49,8	-	-	-	-
22	65,6*	85,1	-	-	-	-	28	45,2*	49,4	-	-	-	-
24	60,6*	83,0	-	-	-	-	30	42,2*	48,8	-	-	-	-
26	56,3*	80,7	-	-	-	-	34	37,1*	47,2	-	-	-	-
28	52,6*	78,3	-	-	-	-	38	32,9*	45,5	-	-	-	-
30	49,2*	75,9	-	-	-	-	42	29,4*	43,7	-	-	-	-
34	43,6 *	71,3	-	-	-	-	46	26,5*	41,8	-	-	-	-
38	38,3*	67,1	81,2	-	-	-	48	25,2*	40,9	46,1	-	-	-
42	31,8	62,9	78,7	-	-	-	50	24,0*	40,0	46,1	-	-	-
46	-	-	71,1	-	-	-	54	21,8*	38,3	45,5	-	-	-
50	-	-	64,4	-	-	-	58	19,5*	36,6	44,5	-	-	-
54	-	-	58,7		-	-	62	17,6*	35,0	42,9	-	-	-
58	-	-		48,4	-	-	66	14,5	33,3	41,4	-	-	-
62	-	-	-	44,6	-	-	70	-	-	39,5	35,0	-	-
66	-	-	-	41,3	-	-	74	-	-	37,6	32,9	-	-
70	-	-	-	-	34,7	-	78	-	-	35,1	30,7	-	-
74	-	-	-	-	32,4	-	82	-	-	-	28,7	-	-
78	-	-	-	-	30,3	-	86	-	-	-	26,9		-
82	-	-	-	-	-	-	90	-	-	-	25,3	22,1	-
							94	-	-	-	-	20,7	-
\% $72 \mathrm{~m}+48 \mathrm{~m}$							98	-	-	-	-	19,5	-
m	t	t	t	t	t	t	110	-	-	-	-	.	13,0
18	63,4*	66,1*	.	-	-	-	($72 \mathrm{~m}+72 \mathrm{~m}$						
20	63,4*	65,5*	-	-	-	-							
22	60,9*	65,7	-	-	-	.							
24	56,2*	65,7	-	-	-	-	m	t	t	t	t	t	t
26	52,2*	64,6	-	-	-	-	24	35,9*	37,2*	-	-	-	-
28	48,7*	63,3	-	-	-	-	26	35,9*	36,9*	-	-	-	-
30	45,5*	61,9	-	-	-	-	28	35,6*	36,5*	-	-	-	-
34	40,2*	59,0	-	-	-	-	30	36,3	37,0	-	-	-	-
38	35,8*	56,1	-	-	-	-	34	34,3*	36,4	-	-	-	-
42	32,2*	53,2	-	-	-	-	38	30,3*	35,6	-	-	-	-
44	30,5*	51,9	61,2	-	-	-	42	26,9*	34,6	-	-	-	-
46	28,6*	50,6	60,9	-	-	-	46	24,1*	33,5	-	-	-	-
50	25,5*	48,1	59,1	-	-	-	50	21,7*	32,4	-	-	-	-
54	21,4	45,5	56,4	-	-	-	54	19,5*	31,2	33,9	-	-	-
58	21,	,5	52,2	-	-	-	58	17,7*	30,1	33,8	-	-	-
62	-	-	48,1	42,0	-	-	62	16,0*	28,9	33,5	-	-	-
66	-	-	44,6	39,6	-	-	66	14,5*	27,6	32,9	-	-	-
70	-	-	-	36,7	-	-	70	13,0*	26,4	32,0	-	-	-
74	-	-	-	34,2	-	-	74	11,6*	25,2	31,2	-	-	-
78	-	-	-	32,0	-	-	78	8,9	24,0	30,2	28,1	-	-
82	-	-	-	-	26,7	-	82	-	-	29,0	27,3	-	-
86	-	-	-	-	25,0	-	86	-	-	27,8	25,5	-	-
90	-	-	-	-	23,6	-	90	-	-	26,6	23,9	-	-
94	-	-	-	-	-	19,3	94	-	-	-	22,4	-	-
98	-	-	-	-	-	18,1	98	-	-	-	21,1	17,8	-
							102	-	-	-	19,9	16,6	-
							106	-	-	-	-	15,4	-
							110	-	-	-	-	14,4	-
							114	-	-	-	-	-	10,1
							118	-	-	-	-	-	9,3
* Ma	m angle 8	7°. 메이ㄴㅜㅜㅁ	각도				122	-	-	-	-	-	8,6

* Main boom angle 87°. 메인붐 각도 87°

Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and 45°, capacities for intermediate boom positions are calculated by the crane control system IC- 1 메인붐 각도 $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ 와 45°; 중간 붐 위치의 인양능력은 크레인 컨트롤 시스템 $\mathrm{IC}-1$ 으로 계산된다

수퍼리프트와 러핑 플라이 짚

[^4]Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and 45°, capacities for intermediate boom positions are calculated by the crane control system IC-1 메인붐 각도 $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ 와 45°; 중간 붐 위치의 인양능력은 크레인 컨트롤 시스템 $\mathrm{IC}-1$ 으로 계산된다

수퍼리프트와 러핑 플라이 짚

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& $160 \mathrm{t}+40$ \& ZB \& \& \multicolumn{2}{|l|}{9-15 m} \& \multicolumn{3}{|l|}{다ㄴㅐㅐ, 7,25 m} \& \multicolumn{2}{|l|}{D $9.8 \mathrm{~m} / \mathrm{s}$} \& \multicolumn{2}{|c|}{360°} \& ISO

\hline \multicolumn{7}{|l|}{$$
78 \mathrm{~m}+60 \mathrm{~m}
$$} \& \multicolumn{7}{|l|}{$$
78 m+84 m
$$}

\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{$$
\text { () } \stackrel{\models}{\square}
$$}} \& \multicolumn{5}{|c|}{0t-240t} \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{$$
\begin{array}{|ccc}
& 0 \mathrm{t} \\
\hline & 9 \mathrm{~m} \\
\hdashline & 87^{\circ}-85^{\circ}
\end{array}
$$}} \& \multicolumn{5}{|c|}{0t-240t}

\hline \& \& \multicolumn{5}{|c|}{9m-15m} \& \& \& \multicolumn{5}{|c|}{$9 \mathrm{~m}-15 \mathrm{~m}$}

\hline \& \& $87^{\circ}-85^{\circ}$ \& 75° \& 65° \& 55° \& 45° \& \& \& $87^{\circ} 85^{\circ}$ \& 75° \& 65° \& 55° \& 45°

\hline m \& t \& t \& t \& t \& t \& t \& m \& t \& t \& t \& t \& t \& t

\hline 22 \& 40,8* \& 43,5* \& - \& - \& . \& - \& 28 \& 22,1* \& 23,7* \& - \& - \& - \& -

\hline 24 \& 40,5* \& 42,8* \& - \& - \& - \& - \& 30 \& 22,0* \& 23,4* \& - \& - \& - \& -

\hline 26 \& 40,5 \& 43,0 \& - \& - \& - \& - \& 34 \& 22,0 \& 23,3 \& - \& - \& - \& -

\hline 28 \& 40,5 \& 42,7 \& - \& - \& - \& - \& 38 \& 21,6 \& 22,8 \& - \& \& \&

\hline 30 \& 38,6* \& 42,0 \& - \& - \& - \& - \& 42 \& 21,2 \& 22,2 \& - \& - \& - \& -

\hline 34 \& 35,7* \& 40,5 \& - \& - \& - \& - \& 46 \& 19,6* \& 21,4 \& - \& - \& - \& -

\hline 38 \& 31,7* \& 38,9 \& - \& - \& - \& - \& 50 \& 18,6* \& 20,7 \& - \& - \& - \& -

\hline 42 \& 28,4* \& 37,2 \& - \& - \& - \& - \& 54 \& 16,6* \& 19,9 \& - \& - \& - \& -

\hline 46 \& 25,5* \& 35,5 \& - \& - \& - \& - \& 58 \& 14,9* \& 19,2 \& - \& - \& - \& -

\hline 50 \& 23,1* \& 33,8 \& 37,9 \& - \& - \& - \& 62 \& 13,3* \& 18,5 \& 19,8 \& - \& - \& -

\hline 54 \& 21,0* \& 32,1 \& 37,5 \& - \& - \& - \& 66 \& 11,9* \& 17,8 \& 19,6 \& - \& - \& -

\hline 58 \& 19,1* \& 30,5 \& 36,2 \& - \& - \& - \& 70 \& 10,7* \& 17,0 \& 19,2 \& - \& - \& -

\hline 62 \& 17,3* \& 28,8 \& 34,6 \& - \& - \& - \& 74 \& 9,6* \& 16,2 \& 18,6 \& - \& - \& -

\hline 66 \& 14,1 \& 27,1 \& 33,0 \& - \& - \& - \& 78 \& 8,6* \& 15,4 \& 18,0 \& - \& - \& -

\hline 70 \& , \& , \& 31,2 \& - \& - \& - \& 82 \& 7,7* \& 14,7 \& 17,4 \& - \& - \& -

\hline 74 \& - \& - \& 29,3 \& 30,1 \& - \& - \& 86 \& 6,8* \& 13,9 \& 16,7 \& 15,6 \& - \& -

\hline 78 \& - \& - \& 27,4 \& 29,0 \& - \& - \& 90 \& 4,5 \& 13,1 \& 15,9 \& 15,6 \& - \& -

\hline 82 \& - \& - \& . \& 27,5 \& - \& - \& 94 \& - \& - \& 15,1 \& 15,4 \& - \& -

\hline 86 \& - \& - \& - \& 25,7 \& - \& - \& 98 \& - \& - \& 14,3 \& 14,9 \& - \& -

\hline 90 \& - \& - \& - \& 24,1 \& - \& - \& 102 \& - \& - \& 13,5 \& 14,4 \& - \& -

\hline 94 \& - \& - \& - \& - \& 19,3 \& - \& 106 \& - \& - \& - \& 13,7 \& - \& -

\hline 98 \& - \& - \& - \& - \& 18,0 \& - \& 110 \& - \& - \& - \& 12,9 \& 11,2 \& -

\hline 102 \& - \& - \& - \& - \& 16,8 \& - \& 114 \& - \& - \& - \& 12,1 \& 10,3 \& -

\hline 110 \& - \& - \& - \& - \& - \& 11,0 \& 118 \& - \& - \& - \& . \& 9,4 \&

\hline 114 \& - \& - \& - \& - \& - \& 10,2 \& 122 \& - \& - \& - \& - \& 8,7 \& -

\hline \& \& \& \& \& \& \& 126 \& - \& - \& - \& - \& 7,9 \&

\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{($78 \mathrm{~m}+72 \mathrm{~m}$}} \& 130 \& - \& - \& - \& - \& - \& 3,9

\hline \& \& \& \& \& \& \& \multirow[t]{3}{*}{134
138} \& - \& - \& - \& - \& - \& 3,3

\hline m \& ! \& ${ }^{\text {t }}$ \& t \& t \& t \& t \& \& - \& - \& \multirow[t]{2}{*}{-} \& - \& - \& 2,8

\hline 24 \& 30,7* \& 32,8* \& - \& - \& - \& - \& \& \& \& \& \& \&

\hline 26 \& $30,7 *$
30

* \& 32,6* \& - \& - \& - \& - \& \multicolumn{7}{|l|}{\multirow[t]{2}{*}{$$
84 m+24 m
$$}}

\hline 28 \& 30,3* \& 32,1* \& - \& - \& - \& - \& \& \& \& \& \& \&

\hline 30 \& 30,6 \& 32,3 \& - \& - \& - \& - \& m \& t \& t \& t \& t \& t \& t

\hline 34 \& 30,2 \& 31,6 \& - \& - \& - \& - \& 14 \& 82,0* \& 87,0* \& - \& - \& - \& -

\hline 38 \& 28,2* \& 30,7 \& - \& - \& - \& - \& 16 \& 81,0* \& 84,5* \& - \& - \& - \& -

\hline 42 \& 25,9* \& 29,7 \& - \& - \& - \& - \& 18 \& 77,7* \& 86,1 \& - \& - \& - \& -

\hline 46 \& 23,2* \& 28,5 \& - \& - \& - \& - \& 20 \& 71,2* \& 83,5 \& - \& - \& - \& -

\hline 50 \& 20,8* \& 27,4 \& - \& - \& - \& - \& 22 \& 65,6* \& 80,8 \& - \& - \& - \& -

\hline 54 \& 18,7* \& 26,3 \& 27,8 \& - \& - \& - \& 24 \& 60,9* \& 78,0 \& - \& - \& - \& -

\hline 58 \& 16,9* \& 25,1 \& 27,7 \& - \& - \& - \& 26 \& 56,8* \& 75,2 \& - \& - \& - \& -

\hline 62 \& 15,4* \& 24,0 \& 27,1 \& - \& - \& - \& 28 \& 53,2* \& 72,6 \& - \& - \& - \& -

\hline 66 \& 14,0* \& 22,9 \& 26,3 \& - \& - \& - \& 30 \& 50,2* \& 70,1 \& - \& - \& - \& -

\hline 70 \& 12,7* \& 21,8 \& 25,3 \& - \& - \& - \& 32 \& 44,0 \& 67,5 \& - \& - \& - \& -

\hline 74 \& 11,3* \& 20,7 \& 24,2 \& - \& - \& - \& 36 \& - \& - \& 75,7 \& - \& - \& -

\hline 78 \& 8,5 \& 19,6 \& 23,2 \& 22,5 \& - \& - \& 38 \& - \& - \& 74,4 \& - \& - \& -

\hline 82 \& - \& - \& 21,9 \& 22,4 \& - \& - \& 42 \& - \& - \& 68,3 \& - \& - \& -

\hline 86 \& - \& - \& 20,6 \& 21,7 \& - \& - \& 46 \& - \& - \& 61,8 \& - \& - \& -

\hline 90 \& - \& - \& 19,3 \& 20,8 \& - \& - \& 54 \& - \& - \& - \& 50,8 \& - \& -

\hline 94 \& - \& - \& - \& 19,9 \& - \& - \& 58 \& - \& - \& - \& 46,6 \& - \& -

\hline 98 \& - \& - \& - \& 18,7 \& - \& - \& 70 \& - \& - \& - \& - \& 32,7 \& -

\hline 102 \& - \& - \& \& 17,5 \& 14,8 \& - \& 74 \& - \& - \& - \& - \& 30,5 \& -

\hline 106 \& - \& - \& - \& - \& 13,7 \& - \& 78 \& - \& - \& - \& - \& - \& -

\hline
\end{tabular}

* Main boom angle 87°. 메인붐 각도 87°

Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and 45°, capacities for intermediate boom positions are calculated by the crane control system IC-1 메인붐 각도 $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ 와 45°; 중간 붐 위치의

수퍼리프트와 러핑 플라이 짚

수퍼리프트와 러핑 플라이 짚

[^5]| 7,25 m | | D $9.8 \mathrm{~m} / \mathrm{s}$ | | | | ISO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 90 90 m | | | | | | |
| | | 0t-240t | | | | |
| | | 9m-15m | | | | |
| | | $87^{\circ}-85^{\circ}$ | 75° | 65° | 55° | 45° |
| m | t | t | t | t | t | t |
| 17 | 50,2* | 56,3* | - | - | . | - |
| 18 | 50,2* | 55,6* | - | - | - | |
| 20 | 48,8* | 54,2* | - | - | - | - |
| 22 | 49,5 | 55,4 | - | - | - | - |
| 24 | 48,8 | 54,1 | - | - | - | - |
| 26 | 46,6 | 52,7 | - | - | - | - |
| 28 | 43,5 | 51,3 | - | - | - | - |
| 30 | 41,1* | 49,9 | - | - | - | - |
| 34 | 38,1* | 47,0 | - | - | - | - |
| 38 | 35,2* | 44,4 | - | - | - | - |
| 42 | 29,2 | 41,9 | 50,7 | - | - | - |
| 44 | 27,9 | 40,7 | 50,7 | - | - | - |
| 46 | - | - | 49,8 | - | - | - |
| 50 | - | - | 47,6 | - | - | - |
| 54 | - | - | 45,2 | - | - | - |
| 58 | - | - | 42,4 | - | - | - |
| 62 | - | - | | 37,3 | - | - |
| 66 | - | - | - | 36,5 | - | - |
| 70 | - | - | - | 33,8 | - | - |
| 74 | - | - | - | 31,5 | - | - |
| 82 | - | - | - | - | 23,0 | - |
| 86 | - | - | - | - | 21,6 | - |
| 90 | - | - | - | - | , | - |

90 90.48 m						
m	t	t	t	t	t	t
19	37,7*	42,8*	-	-	-	-
20	37,7*	42,8*	-	-	-	-
22	37,3*	41,9*	-	-	-	-
24	37,3	42,2	-	-	-	-
26	37,3	41,8	-	-	-	-
28	36,5	40,9	-	-	-	-
30	35,6	40,0	-	-	-	-
34	32,8	38,1	-	-	-	-
38	29,2	36,3	-	-	-	-
42	27,1 *	34,4	-	-	-	-
46	25,3*	32,7	-	-	-	-
48	24,3 *	31,8	38,6	-	-	-
50	23,4*	31,0	38,3	-	-	-
54	19,5	29,3	37,2	-	-	-
58	-	-	35,7	-	-	-
62	-	-	34,2	-	-	-
66	-	-	32,4	-	-	-
70	-	-	30,6	30,5	-	-
74	-	-	-	29,9	-	-
78	-	-	-	27,9	-	-
82	-	-	-	26,0	-	-
86	-	-	-	24,4	-	-
90	-	-	-	-	18,2	-
94	-	-	-	-	16,9	-
98	-	-	-	-	15,7	-

Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and 45°, capacities for intermediate boom positions are calculated by the crane control system IC-1 메인붐 각도 $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ 와 45°; 중간 붐 위치의 인양능력은 크레인 컨트롤 시스템 IC-1 으로 계산된다

수퍼리프트와 러핑 플라이 짚

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& 160 t + 40 \& ZB \& \& \multicolumn{2}{|l|}{9-15 m} \& \multicolumn{2}{|l|}{다ㄴㅐㅐㅐ, $7,25 \mathrm{~m}$} \& \& \multicolumn{2}{|l|}{D $9.8 \mathrm{~m} / \mathrm{s}$} \& \multicolumn{2}{|c|}{360°} \& ISO

\hline \multicolumn{7}{|l|}{$$
90 \mathrm{~m}+60 \mathrm{~m}
$$} \& \multicolumn{7}{|l|}{9 $96+24 \mathrm{~m}$}

\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{$$
\begin{array}{ccc}
& 0 \mathrm{t} \\
& 9 \mathrm{~m} \\
\hdashline & 87^{\circ}-85^{\circ}
\end{array}
$$}} \& \multicolumn{5}{|c|}{0t-240t} \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{$$
\begin{array}{|cc|}
\hline \models & 0 \mathrm{t} \\
\hdashline & 9 \mathrm{~m} \\
\hdashline & 87^{\circ}-85^{\circ}
\end{array}
$$}} \& \multicolumn{5}{|c|}{$0 \mathrm{t}-240 \mathrm{t}$}

\hline \& \& \multicolumn{5}{|c|}{$9 \mathrm{~m}-15 \mathrm{~m}$} \& \& \& \multicolumn{5}{|c|}{9m-15m}

\hline \& \& $$
87^{\circ}-85^{\circ}
$$ \& 75° \& 65° \& 55° \& 45° \& \& \& 870 -85° \& \& 65° \& 55° \& 45°

\hline m \& t \& t \& t \& t \& t \& t \& m \& t \& t \& t \& t \& t \& t

\hline 22 \& 28,4* \& 32,5* \& - \& - \& - \& - \& 14 \& 58,0* \& 65,1* \& - \& - \& - \& -

\hline 24 \& 28,4* \& 32,2* \& - \& - \& - \& - \& 16 \& 58,0* \& 64,3* \& - \& - \& - \& -

\hline 26 \& 27,8* \& 31,6* \& - \& - \& - \& - \& 18 \& 58,4 \& 65,0 \& - \& - \& - \& -

\hline 28 \& 28,0 \& 31,9 \& - \& - \& - \& - \& 20 \& 58,4 \& 64,3 \& - \& - \& - \& -

\hline 30 \& 28,0 \& 31,6 \& - \& - \& - \& - \& 22 \& 55,9 \& 62,7 \& - \& - \& - \& -

\hline 34 \& 26,9 \& 30,5 \& - \& - \& - \& - \& 24 \& 51,9 \& 61,1 \& - \& - \& - \& -

\hline 38 \& 25,5 \& 29,1 \& - \& - \& - \& - \& 26 \& 48,5* \& 59,4 \& - \& - \& - \& -

\hline 42 \& 23,5 \& 27,8 \& - \& - \& - \& - \& 28 \& 46,7* \& 57,8 \& - \& - \& - \& -

\hline 46 \& 21,0 \& 26,5 \& - \& - \& - \& - \& 30 \& 44,8* \& 56,6 \& - \& - \& - \& -

\hline 50 \& 19,4* \& 25,2 \& - \& - \& - \& - \& 34 \& 38,0 \& 54,0 \& - \& - \& - \& -

\hline 54 \& 18,1* \& 24,0 \& 28,0 \& - \& - \& - \& 40 \& - \& - \& 62,8 \& - \& - \& -

\hline 58 \& 16,8* \& 22,9 \& 27,5 \& - \& - \& - \& 42 \& - \& - \& 62,2 \& - \& - \& -

\hline 62 \& 15,5* \& 21,7 \& 26,6 \& - \& - \& - \& 46 \& - \& - \& 59,6 \& - \& - \& -

\hline 66 \& 12,8 \& 20,6 \& 25,6 \& - \& - \& - \& 50 \& - \& - \& 57,1 \& - \& - \& -

\hline 70 \& - \& - \& 24,6 \& - \& - \& - \& 58 \& - \& - \& - \& 41,0 \& - \& -

\hline 74 \& - \& - \& 23,5 \& - \& - \& - \& 62 \& - \& - \& - \& 39,3 \& - \& -

\hline 78 \& - \& - \& 22,3 \& 24,0 \& - \& - \& 66 \& - \& - \& - \& 36,4 \& - \& -

\hline 82 \& - \& - \& 21,1 \& 23,8 \& - \& - \& \& \& \& \& \& \&

\hline 86 \& - \& - \& , \& 23,1 \& - \& - \& \multicolumn{7}{|l|}{\multirow[t]{2}{*}{$$
96 \mathrm{~m}+36 \mathrm{~m}
$$}}

\hline 90 \& - \& - \& - \& 21,6 \& - \& - \& \& \& \& \& \& \&

\hline 94 \& - \& - \& - \& 20,3 \& - \& - \& m \& \multicolumn{2}{|l|}{t t} \& t \& \multirow[t]{2}{*}{t} \& \multirow[t]{2}{*}{t.} \& \multirow[t]{2}{*}{t}

\hline 98 \& - \& - \& - \& 19,1 \& 13,8 \& - \& \multirow[t]{2}{*}{17} \& \multirow[t]{2}{*}{43,5**} \& \multirow[t]{2}{*}{49,7
49,

} \& \multirow[t]{2}{}{-} \& \& \&

\hline 102 \& - \& - \& - \& - \& 12,8 \& \& \& \& \& \& - \& - \& -

\hline 106 \& - \& - \& - \& - \& 11,8 \& - \& 18 \& \multirow[t]{2}{*}{42,9*} \& 48,6* \& - \& - \& - \& -

\hline 110 \& - \& - \& - \& - \& 11,0 \& \& 22 \& \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 49,8 \\
& 48,8
\end{aligned}
$$} \& \multirow[t]{2}{*}{-} \& - \& \multirow[t]{2}{*}{-} \& \multirow[t]{2}{*}{-}

\hline 118 \& - \& - \& - \& - \& \& 5,2 \& \multirow[t]{2}{*}{24} \& $$
\begin{aligned}
& 43,5 \\
& 43,5
\end{aligned}
$$ \& \& \& \multirow[t]{2}{*}{-} \& \&

\hline 122 \& - \& - \& - \& - \& - \& 4,7 \& \& 42,4 \& \multicolumn{2}{|l|}{47,7} \& \& - \& -

\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{$$
90 \mathrm{~m}+72 \mathrm{~m}
$$}} \& 28 \& 41,2 \& \multicolumn{2}{|l|}{46,6} \& \multicolumn{2}{|l|}{- -} \& -

\hline \& \& \& \& \& \& \& $$
\begin{aligned}
& 2 \\
& 30 \\
& 34
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 38,7 \\
& 34,3
\end{aligned}
$$
\] \& \multicolumn{2}{|l|}{45,4} \& \multicolumn{2}{|l|}{- -} \& -

\hline m \& t \& t \& t \& t \& t \& t \& 38 \& 31,7* \& $$
\begin{aligned}
& 43,1 \\
& 41,2
\end{aligned}
$$ \& - \& - \& \multirow[t]{2}{*}{-} \& \multirow[t]{2}{*}{-}

\hline 26 \& 20,3* \& 24,1* \& - \& - \& - \& - \& 42 \& 29,4* \& 39,5 \& - \& - \& \&

\hline 28 \& 20,1* \& 23,6* \& - \& - \& - \& - \& 44 \& \multirow[t]{2}{*}{26,4} \& \multirow[t]{2}{*}{38,6} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 47,4 \\
& 47,4
\end{aligned}
$$} \& \multirow[t]{2}{*}{-} \& - \& \multirow[t]{2}{*}{-}

\hline 30 \& 19,9 \& 23,4 \& - \& - \& - \& - \& 46 \& \& \& \& \& - \&

\hline 34 \& 19,7 \& 23,0 \& - \& - \& - \& - \& 50 \& - \& - \& 46,2 \& $\stackrel{-}{-}$ \& \multirow[t]{2}{*}{-} \& \multirow[t]{2}{*}{-}

\hline 38 \& 18,9 \& 22,1 \& - \& - \& - \& - \& 54 \& - \& - \& 44,7 \& - \& \&

\hline 42 \& 17,9 \& 21,2 \& - \& - \& - \& - \& \multirow[t]{2}{*}{58} \& \multirow[t]{2}{*}{-} \& \multirow[t]{2}{*}{-} \& \multirow[t]{2}{*}{$$
\begin{array}{r}
4,1 \\
43,2 \\
41,8
\end{array}
$$} \& \multirow[t]{2}{*}{-} \& \multirow[t]{2}{*}{-} \& \multirow[t]{2}{*}{-}

\hline 46 \& 17,0 \& 20,3 \& - \& - \& - \& - \& \& \& \& \& \& \&

\hline 50 \& 16,0 \& 19,4 \& - \& - \& - \& - \& 66 \& - \& \multirow[t]{2}{*}{-} \& \multirow[t]{2}{*}{$\stackrel{-}{-}$} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 33,8 \\
& 32,0
\end{aligned}
$$} \& - \& -

\hline 54 \& 14,9 \& 18,5 \& - \& - \& - \& - \& 70 \& \multirow[t]{2}{*}{-} \& \& \& \& - \& .

\hline 58 \& 13,3 \& 17,6 \& 20,3 \& - \& - \& - \& 74 \& \& - \& \multirow[t]{2}{*}{-} \& $$
\begin{aligned}
& 32,0 \\
& 29,8
\end{aligned}
$$ \& \multirow[t]{2}{*}{-} \& \multirow[t]{2}{*}{-}

\hline 62 \& 11,9* \& 16,7 \& 20,1 \& - \& - \& - \& 78 \& \multirow[t]{2}{*}{-} \& \multirow[t]{2}{*}{-} \& \& \multirow[t]{2}{*}{27,8} \& \&

\hline 66 \& 11,1** \& 15,9 \& 19,6 \& - \& - \& - \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 86 \\
& 90
\end{aligned}
$$} \& \& \& \multirow[t]{2}{*}{$-$} \& \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 19,1 \\
& 17,8 \\
& \hline
\end{aligned}
$$
\]} \& \multirow[t]{2}{*}{-}

\hline 70 \& 10,2* \& 15,1 \& 19,0 \& - \& - \& - \& \& - \& - \& \& - \& \&

\hline
\end{tabular}

*Main boom angle 87°. 메인붐 각도 87°
Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and 45°, capacities for intermediate boom positions are calculated by the crane control system IC-1 메인붐 각도 $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ 와 45°; 중간 붐 위치의 인양능력은 크레인 컨트롤 시스템 IC-1 으로 계산된다

수퍼리프트와 러핑 플라이 짚

* Main boom angle 87°. 메인붐 각도 87°

Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and 45°, capacities for intermediate boom positions are calculated by the crane control system IC-1 메인붐 각도 $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ 와 45°; 중간 붐 위치의 인양능력은 크레인 컨트롤 시스템 IC-1 으로 계산된다

CC 2400-1
인양능력에 대한 주석

Ratings are in compliance with ISO 4305.
Weight of hook blocks and slings is part of the load, and is to be deducted from the capacity ratings.
Consult operation manual for further details.
Note: Data published herein is intended as a guide only and shall not be construed to warrant applicability for lifting purposes.
Crane operation is subject to the computer charts and operation manual both supplied with the crane.
The load charts shown in this brochure apply to Standard-SL and Vario-SL. Charts for Tele-SL with counterweight carrier are available on request. In some instances the superlift counterweight does not lift off the ground with the indicated load.

인양 능력에 대한 주석 ISO 4305에 준수한 등급.
훅 블록과 작업용 슬링의 중량은 인양화물의 일부로, 이것은 크레인의 인양능력에서 제외하여야 한다.
추가적인 자세한 사항들은 사용자 지침서를 참조하시오.
노트: 여기에 인쇄 된 자료는 오직 가이드의 목적으로 만들어졌으며 인양 목적을 위해 보증 된 정식 인양 능력표로 해석되어서는 안된다. 크레인 작동은 크레인과 함께 공급되는 컴퓨터 차트와 사용자 지침서를 따라야 한다.

이 책자에 나온 로드차트는 스탠다드-SL과 바리오-SL을 적용한다. 카운터웨이트 캐리어와 텔레스코핑-SL은 요청 시 가능하다. 어떤 경우에는, 수퍼리프트 카운터웨이트가 표기된 로드를 들어올리지 못한다.

Crawler Carrier

Carbody

Crawlers

Power train
3 -section carrier comprising of carbody and two crawlers. Hydraulic pin connections between crawlers and carbody provide for easy assembly and removal to minimise width and weight for transportation.
Bending- and torsion-resistant welded structure of box type construction, fabricated of high-strength fine-grain structural steel
Side frames: bending-resistant welded structure of high-strength fine-grain structural steel. Track shoes and sprockets are fabricated of heat-treated high-strength cast steel. 14 rollers on each side frame with hardened rolling surfaces. Automatic centralized lubrication is included as standard.

The tracks are powered by one hydraulic motor each through closed planetary gear reduction units running in oil bath, equipped with spring-applied hydraulically released holding brakes; the gear units are of extremely compact design to fit within the width of the crawlers. Each crawler is infinitely variable controlled, both independently and in opposite direction.

Superstructure

Counterweight	160 t in combination with 40 t central ballast on carrier.
A-frame	Hydraulic raising system for A-frame as standard.
Frame	Torsion-resistant welded structure fabricated of high-strength fine-grain structural steel. Connected to carrier by triple-row roller bearing slew ring.
Drive	MTU diesel engine type OM $501 \mathrm{LA}, 260 \mathrm{~kW}(353 \mathrm{HP})$ at 2000 1/min, torque 2000 Nm at $1080 \frac{1}{1} \mathrm{~min}$. The engine complies with EUROMOT 3b, Tier 4i and CARB regulations. Pump distribution gearbox with five variable displacement axial piston pumps incl. electronic control system, and gear pumps.
Rope drums	The standard superstructure equipment includes three rope drums - hoist 1 , hoist 2 and boom hoist. The drums are powered by hydraulic motors through closed planetary gear units running in oil bath. All rope drums have spring-applied, hydraulically released multi-disk brakes and non-wearing hydraulic braking for load lowering. Rope ends H 1, 2 and W 1, 2 equipped with quick-connect rope end fittings. Hoist H 1 (and optionally H2) is removable to minimise weight for transportation.
Reeving winch	Mounted on superstructure.
Slew units	Powered by two hydraulic motors through closed, planetary gear unit running in oil bath. Spring-applied, hydraulically released holding brake and non-wearing hydraulic braking.
Control system	IC-1: Electronic proportional valve pilot control integrated in stored-program control system incl. diagnostics. 2 colour monitors, safe load indicator operated via a touchscreen. Working speeds infinitely variable controlled by the lever position. Automatic power control for optimal utilisation of engine output.
Cabin	Comfortable cab with large windscreen and air-conditioning. Safety-glazing all around, roof window, selfcontained hot air heater, full instrumentation and crane controls. The cab can be tilted back for improved operator view of boom point. A camera system is installed to monitor the rope drums. For transportation, the cab swings in front of the superstructure to minimise width.
Electrical equipment	24 V d. c. system.

Optional Equipment

Hydraulic cylinder A-frame For self-assembly of crawlers.
Assembly jacks
Sideways outriggers
Counterweight carrier
Quick-connection

Track shoes
Heavy-duty head HA For erection of long boom systems.
Drive 4×2, total weight max. 200 t . transportation.
Optional width of 1 m and 1.5 m .

Four hydraulic jacking cylinders on carbody (folding within 3 m width) for easy assembly of crawlers.

Hydraulic quick-disconnect fittings on carrier and superstructure facilitate removal to minimise weight for
$400 t+$ sheave assembly $400 t$, for capacities $>316 t$.

Boom Conf	
SH:	Main boom: foot section 10.5 m , inserts 12 m and 6 m (type 2721) and tapered insert 12 m , boom head 1.5 m . Main boom lengths: 24-84 m.
SH / LH: (SGL variable)	Main boom: foot section 10.5 m , inserts 12 m and 6 m (type 2721), tapered insert 12 m , extended by inserts 12 m and 6 m (type 2317), top section 7.5 m . Main boom lengths: 42-108 m.
SH / LH: (SGL max.)	Main boom: foot section 10.5 m , inserts 12 m and 6 m (type 2721), extended by additional inserts 12 m (type 2721), tapered insert 12 m , top section 7.5 m . Main boom lengths: 84-102 m.
SW:	Main boom: same as SH. Offset 87° to 65°. Luffing fly jib: foot section 4.5 m , inserts 12 m and 6 m (type 2317), top section 7.5 m . Main boom lengths: 30-72 m. Fly jib lengths: 24-72 m.
SSL:	Main boom: same as SH. Superlift equipment. Main boom lengths: 30-96 m.
SSL / LSL: (SGL 70.5 m)	Main boom: foot section 10.5 m , inserts 12 m and 6 m (type 2721), tapered insert 12 m , extended by additional inserts 12 m and 6 m (type 2317), top section 7.5 m . Superlift equipment. Main boom lengths: 78-126 m.
SSL / LSL: (SGL max.)	Main boom: foot section 10.5 m , inserts 12 m and 6 m (type 2721), extended by additional inserts 12 m (type 2721), tapered insert 12 m , top section 7.5 m . Superlift equipment. Main boom lengths: 78-114 m.
SWSL:	Main boom: same as SH. Offset 87° to 45°. Luffing fly jib: same as SW. Superlift equipment. Main boom lengths: 36-96 m. Fly jib lengths: 24-84 m.
+LF2:	Addition to SH, SH/LH, SSL or SSL/LSL. Fixed fly jib: foot section 6 m , inserts 12 m (type 1813), top section 6 m . Fly jib lengths: 12, 24, 36 m . Offset: $10^{\circ}, 15^{\circ}, 20^{\circ}$ and 30°.
Runner	
Operator aids	Load moment indicator, hoist limit switch, limit switches for boom movements, hydraulic boom backstops, anemometer.
Hydraulic pinning	The boom sections are prepared for hydraulic pinning.
Superlift Combinations	
Standard-SL	Mast 30 m (type 2116), counterweight tray for max. 240 t . Superlift radii 11, 13, 15 m (9 m without tray).
Vario-SL	Mast 30 m (type 2116), counterweight tray for max. 240 t . Superlift radius infinitely variable during operation 9 to 15 m .
Tele-SL	Mast 30 m (type 2116), counterweight carrier for max. 240 t . Superlift radius infinitely variable during operation 11 to 15 m .

크롤라 캐리어

카보디와 두개의 크롤라를 포함하고 있는 3 개 섹션의 캐리어．크롤라와 카보디의 유압식 핀 커넥션은 쉬운 조립과 운송 시 폭과 무게를 최소화하는 해체작업을 제공한다．
카보디
크롤라

동력 장치
고강도 세립 강재로 만들어져 구부러짐과 비틀림에 강하게 용접된 박스 타입 구조의 구조물．
사이드 프레임；고강도 세립 강재의 구부러짐과 비틀림에 강하게 용접된 구조물．트랙슈와 체인기어들은 열처리된 고강도 주강（鑄鋼）으로 제작되었다．각각의 단단한 구름면이 있는 사이드 프레임에 14 개의 롤러．기본으로 자동 중앙 급유 장치 장착．
트랙은 유조（油槽）로 실행되는 폐쇄된 유성형 기어 감속 장치를 통해 각각 한 개의 유압 모터를 통해 구동된다，스프링이 장착 된 유압 해제식 홀딩 브레이크 장착 됨；기어 장치들은 크롤라 폭 안에 맞추기 위해 아주 컴팩트한 디자인이다．각각의 크롤라는 무한히 다양하게 컨트롤 되고，양쪽의 크롤라는 독립적으로 조종되고 반대 방향으로도 조종 될 수 있다．

상부

카운터웨이트
A－프레임
프레임
구동

로프 드럼

리빙 윈치
선회 장치
컨트롤 시스템

조종석

전기 장치
캐리어에 40t 센트럴 발라스트를 합쳐 160 t ．
기본사양으로 구성 된 A －프레임을 위한 유압식 들어올리기 시스템．
고강도 세립 강재로 만들어진 비틀림 방지 용접 구조물． 3 열 롤러 베어링의 선회링과 연결 된 캐리어．
MTU 디젤 엔진 타입 OM $501 \mathrm{LA}, 260 \mathrm{~kW}$（ 353 hp ）at $2000 \frac{1}{1 / \mathrm{min} \text { ，토크 } 2000 \mathrm{Nm} \text { at } 1080 \frac{1}{1 / m i n} \text { ．엔진은 }}$ EUROMOT 3b，Tier 4i와 탄소 규제에 준수함．전기 제어 시스템과 기어 펌프를 포함 한 5 개의 가변 용량형 피스톤 펌프가 달린 펌프 분배 기어박스．
기본 상부는 세가지 로프 드럼을 포함한다－호이스트 1 ，호이스트 2 와 붐 호이스트．드럼은 유조 안에서 작동하는 폐쇄식 유성형 기어 장치를 통하여 유압식 모터로 작동된다．모든 로프 드럼은 스프링 제동식， 유압 해제식 멀티 디스크 브레이크와 하중 저하를 위한 비마모성 유압식 브레이크를 가지고 있다． 로프는 퀵－커넥트 로프 엔드 피팅으로 되어 $\mathrm{H} 1,2$ 와 $\mathrm{W} 1,2$ 는 마감 된다．호이스트 H 1 （선택가능 H 2 ）는 운송 무게를 줄이기 위해 분리 가능하다．
상부에 장착．
유조에서 작동하는 폐쇄식 유성형 기어 장치를 통한 두개의 유압식 모터로 작동된다．스프링 제동식， 유압 해제식 홀딩 브레이크와 비마모성 유압식 브레이크．
IC－1：진단 프로그램을 포함한 저장 된 프로그램 컨트롤 시스템이 통합 된 전자식 비례 밸브 파일럿 컨트롤， 2 개의 컬러 모니터，터치스크린을 통해서 작롱 되는 안전 하중 지시계．레버 위치로 다양하게 조종 되는 작업 속도．엔진 출력을 최적으로 사용하기 위한 자동 파워 컨트롤．작업 반경 제한계 및 접지압 표시기．
전면 큰 유리와 에어컨，모든 방향 안전유리，루프 윈도우，따로 장착 된 난방 장치，크레인 조종장치 및 모든 기기가 달린 편한 운전석．붐의 조합에 따라 더 나은 운전자의 시야 확보를 위하여 조종석을 뒤로 기울일 수 있음．로프 드럼을 확인하기 위한 카메라 설치．운송 시，조종석은 폭을 최소화하기 위하여 상부 앞에서 회전함．

읍셔 장줏

A－프레임 유압실린더
조립 잭（Jacks）
사이드웨이 아우트리거
카운터웨이트 캐리어
퀵－커넥션

트랙 슈
헤비－듀티 헤드 HA

크롤러 자체 조립을 위한 A －프레임 유압실린더
크롤라의 쉬운 조립을 위해 카보디에 4 개의 유압 잭 실린더（ 3 m 폭 이내로 접힘）．
롱（long）붐 시스템을 세우기 위한 사이드웨이 아우트리거．
구동 4×2 ，총 중량 최대 200 t ．
차량에 있는 유압식 퀵－디스커넥트（Quick－disconnect）는 하부와 상부 해 체를 가능케 하여 운송 시 무게를 줄일 수 있게 함．
폭 1 m 와 1.5 m 중 선택 가능．
$400 t+$ 쉬브 조립체 $400 t$ ，인양능력 $>316 t$ 을 위함．

붐 조합
 SH:

SH / LH:
(가변 SGL)

SH / LH:
(SGL max.)
SW:

SSL:

SSL / LSL:
(SGL 70.5 m)

SSL / LSL:
(SGL max.)

SWSL:
+LF2:

러너
안전 장치
유압식 피닝

메인 붐: 풋 섹션 10.5 m , 인서트 12 m 와 6 m (type 2721) 와 테이퍼드 인서트 12 m , 붐 헤드 1.5 m . 메인 붐 길이: $24-84 \mathrm{~m}$.
메인 붐: 풋 섹션 10.5 m , 인서트 12 m 와 6 m (type 2721), 테이퍼드 인서트 12 m , 인서트 12 m 와 6 m (type 2317), 에 의해 연장됨, 톱 섹션 7.5 m .
메인 붐 길이: $42-108 \mathrm{~m}$.
메인 붐: 풋 섹션 10.5 m , 인서트 12 m 와 6 m (type 2721), 추가 인서트 12 m (type 2721), 테이퍼드 인서트 12 m , 톱 섹션 7.5 m . 메인 붐 길이: $84-102 \mathrm{~m}$.
메인 붐: SH 와 같음. 오프셋 87° 에서 65°.
러핑 플라이 짚: 풋 섹션 4.5 m , 인서트 12 m 와 6 m (type 2317), 톱 섹션 7.5 m . 메인 붐 길이: $30-72 \mathrm{~m}$. 플라이 짚 길이: $24-72 \mathrm{~m}$.
메인 붐: SH 와 같음.
수퍼리프트 장치.
메인 붐 길이: $30-96 \mathrm{~m}$.
메인 붐: 풋 섹션 10.5 m , 인서트 12 m 와 6 m (type 2721), 테이퍼드 인서트 12 m , 추가 인서트 12 m 와 6 m (type 2317), 톱 섹션 7.5 m .
수퍼리프트 장치.
메인 붐 길이: $78-126 \mathrm{~m}$.
메인 붐: 풋 섹션 10.5 m , 인서트 12 m 와 6 m (type 2721), 추가 인서트 12 m (type 2721), 테이퍼드 인서트 12 m , 톱 섹션 7.5 m .
수퍼리프트 창치.
메인 붐 길이: 78-114m.
메인 붐: SH 와 같음. 오프셋 87° 에서 45°.
러핑 플라이 짚: SW 와 같음.
수퍼리프트 장치.
메인 붐 길이: $36-96 \mathrm{~m}$.
플라이 짚 길이: $24-84 \mathrm{~m}$.
SH, SH/LH, SSL 또는 SSL/LSL 에 추가.
고정 플라이 짚: 풋 섹션 6 m , 인서트 12 m (type 1813), 톱 섹션 6 m .
플라이 짚 길이: $12,24,36 \mathrm{~m}$.
오프셋: $10^{\circ}, 15^{\circ}, 20^{\circ}$ 와 30°.
전자식 안전 하중 지시계, 호이스트 리미트 스위치, 붐 동작에 대한 리미트 스위치, 유압식 붐 백스톱, 풍향계.
붐 섹션들은 유압식 피닝에 준비 됨.

Superlift Combinations

스탠다드-SL
바리오-SL
텔레-SL

마스트 30 m (type 2116), 최대 240 t 을 위한 카운터웨이트 트레이, 수퍼리프트 반경 $11,13,15 \mathrm{~m}$ (트레이 제외 시 9 m)
마스트 30 m (type 2116), 최대 240 t 을 위한 카운터웨이트 트레이, 9 에서 15 m 작업 동안 수퍼리프트 반경 무한 변경가능.
마스트 30 m (type 2116), 최대 240 t 을 위한 카운터웨이트 트레이, 11 에서 15 m 작업 동안 수퍼리프트 반경 무한 변경가능.

Effective Date: November 2012.
Product specifications and prices are subject to change without notice or obligation. The photographs and/or drawings in this document are for illustrative purposes only. Refer to the appropriate Operator's Manual for instructions on the proper use of this equipment. Failure to follow the appropriate Operator's Manual when using our equipment or to otherwise act irresponsibly may result in serious injury or death. The only warranty applicable to our equipment is the standard written warranty applicable to the particular product and sale and Terex makes no other warranty, express or implied. Products and services listed may be trademarks, service marks or trade-names of Terex Corporation and/or its subsidiaries in the USA and other countries. All rights are reserved Terex ${ }^{\circledR}$ is a registered trademark of Terex Corporation in the USA and many other countries.

발효일: 2012년 11월
제품사양과 가격은 공지나 의무없이 변경될 수 있습니다. 이 문서에 포함된 사진 및/또는 그림은 참고용으로만 사용되어야 합니다. 기기의 올바른 사용에 대한 설명은 해당되는 작동 매뉴얼을 참고하십시오. 기기 사용시 해당 작동 매뉴얼을 준수하지 않거나 무책임한 행동을 하는 것은 심각한 상해나 사망을 초래할 수 있습니다. 기기에 적용가능한 보증은 이 특정 제품 및 판매에 대한 표준 서면 보증뿐이며, Terex사는 기타 다른 보증이나 명시적 또는 묵시적 보증을 하지 않습니다. 나열된 제품이나 서비스는 Terex사 및/또는 미국 및 다른 국가에 있는 Terex사의 등록상표나 서비스 상표, 또는 거래명일 수 있습니다. 모든 권리는 보호됩니다.
Terex ${ }^{\circledR}$ 은 미국 및 다른 많은 국가에 있는 Terex사의 등록상표 입니다.
Copyright 2012 Terex Corporation

Terex Cranes, Global Marketing, Dinglerstraße 24, 66482 Zweibrücken, Germany Tel. +49 (0) 6332 830, Email: info.cranes@terex.com, www.terexcranes.com

www.terexcranes.com

WORKS FOR YOU.

[^0]: Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}$ and 65°, capacities for intermediate boom positions are calculated by the crane control system IC-1
 메인붐 각도 $87^{\circ}-85^{\circ}, 75^{\circ}$ 와 65°; 중간 붐 위치의 인양능력은 크레인 컨트롤 시스템 IC-1으로 계산된다

[^1]: Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}$ and 65°, capacities for intermediate boom positions are calculated by the crane control system IC-1 메인붐 각도 $87^{\circ}-85^{\circ}, 75^{\circ}$ 와 65°; 중간 붐 위치의 인양능력은 크레인 컨트롤 시스템 IC-1으로 계산된다

[^2]: ${ }^{*}$ Main boom angle 87°. 메인붐 각도 87°

[^3]: * Main boom angle 87°. 메인붐 각도 87°

 Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and 45°, capacities for intermediate boom positions are calculated by the crane control system IC-1 메인붐 각도 $87^{\circ}-85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ 와 45°; 중간 붐 위치의 인양능력은 크레인 컨트롤 시스템 IC-1 으로 계산된다

[^4]: * Main boom angle 87°. 메인붐 각도 87°

[^5]: * Main boom angle 87°. 메인붐 각도 87°

