ALL TERRAIN CRANE

AR-1000M

JAPANESE SPECIFICATIONS

CARRIER MODEL	SPEC. NO.
FAUN RTF100-4	AR-1000M-1-90101

Control No. JA-02

AR-1000M

CRANE SPECIFICATIONS

	CRANE SPECI	FICATIONS	
CRANE CAPACITY 11.7m	(17 part-line) (7 part-line) (5 part-line) (4 part-line) (4 part-line) (1 part-line) (1 part-line) (1 part-line)	work. HOIST Hydraulic motor driven pl Automatic brake 2 single winches With flow regulator valve BOOM ELEVATION 1 double-acting hydraulic With flow regulator valve SWING Hydraulic motor driven pl Swing bearing Manual switch brake Swing free/lock changeov OUTRIGGERS Fully hydraulic H-type Slides and jacks each prov device. Full extended width Middle extended width Slide storing float MAX. OUTRIGGER LO 80t ENGINE FOR CRANE Model NISSAN DIESEL NE Type 4-cycle, 6 in-line of water-cooled die: Piston Displacement Max. Output Max. Torque HYDRAULIC PUMPS	with pressure compensation cylinders with pressure compensation anetary gear reducer er type ided with independent operation 7.2m 6.36m, 4.9m, 3.6m DAD GET cylinder, direct-injection, sel engine. 7,412cc 180PS at 2,200rpm 69kg·m at 1,500rpm iston pumps and 2 high pressure
BOOM ELEVATION SPEED -2° - 82° / 45s SWING ANGLE 360° continue SWING SPEED 2.0 rpm WIRE ROPE Main Winch 20mm × 245m (Diameter×Length) Spin-resistant wire rope Auxiliary Winch 20mm × 140m (Diameter×Length) Spin-resistant wire rope HOOK 100t hook (17 part-line) 45t hook (7 part-line) 6.5t hook (1 part-line) 8-Section hydraulically telescoping boom of 2-telescoping method changeover type Telescoping method I stages 2, 3: synchronized Telescoping method II stages 2, 5: synchronized Telescoping method II stages 2 - 5: synchronized BOOM EXTENSION 3 double-acting hydraulic cylinders 1 wire rope type telescoping device With flow regulator valve with pressure con JIB Staged swing-around boon extensions. 3-section hydraulically synchronously telesce Hydraulic non - stage offset (5° - 45°) type	n pensation	SAFETY DEVICES Automatic moment limite Multiple display With working range lin Outrigger extension width detection) Weight combination auto Swing range controller Swing automatic stop dev Boom elevation slow dow Over-winding cutout Level gauge Hook safety latch Cable follower Winch drum lock Hydraulic safety valve Telescopic counterbalance Jack pilot check valve EQUIPMENTS Counterweight dismount of Jib extension device Hook movement amount i Swing frame dismount dev AML external indication la Boom angle indicator Oil cooler Crane cab air conditioner FM radio Hot and cool boxes Lunch table OPTIONAL EQUIPMEI Swing alarm Drum monitor	niting function n automatic detector (individual matic detector ice n and stop device e valve valve device indicator vice imp

OPTIONAL EQUIPMENT Swing alarm Drum monitor

CARRIER SPECIFICATIONS

MANUFACTURER

FAUN GmbH

CARRIER MODEL

RTF 100-4

Model OM402LA (Benz)

4-cycle V8-cylinder, direct-injection, turbo diesel engine with inter cooler Piston displacement

Max. output

12,763cc

381PS at 2,100rpm

Max. torque

173kg·m at 1,000 - 1,500rpm

TRANSMISSION

Power shift type

6-forward and 1-reverse speeds

Sub reducer provided. CLUTCH

Torque converter provided.

Automatic lock-up mechanism provided.

REDUCER

8×4

8×8 ... Off load (with defrock mechanism)

AXLE (all axles)

Full floating

SUSPENSION (all axles)

Hydraulic pneumatic suspension Stroke: +150mm/-120mm

STEERING

Type: Left-side handle

Fully hydraulic power steering

2 circuits

Emergency power steering Mode: Normal (4 front wheels)

Clamp (8 wheels)

Crab (8 wheels)

Rear steering (4 rear wheels)

BRAKE SYSTEM

Service Brake

Air brake on all wheels

2 circuits

Parking Brake

Spring brake, acting on the 2nd, 3rd, 4th axles (6

wheels)

Emergency Brake

Works by applying the parking brake

Auxiliary Brake

Electrical retarder

ELECTRIC SYSTEM

24V DC 2 batteries of 12V-170Ah

FUEL TANK CAPACITY

400 liters

CAB

Two-man type

TIRES

Front 16.00 R25 (all wheels)

11.00-25 (all wheels) Rear

STANDARD EQUIPMENTS

Car air conditioner

FM radio

Mad guard

Centralized lubrication unit

OPTIONAL EQUIPMENT

Bed for napping

GENERAL DATA

DIMENSIONS (CARRIER ONLY)

Overall length 10,635mm Overall width 2,780mm Overall height 2,765mm

Wheel base 1,990mm + 2,305mm + 1,700mm = 5,995mm

Tread 2,315mm

WEIGHTS (CARRIER ONLY)

Gross vehicle weight

Total 28,100kg (Cab two-man type)

7.0m

Front 16,100kg Rear 12,000kg

PERFORMANCE (CARRIER ONLY)

Max. traveling speed 70.0km/h 0.52

8-wheel steering

Gradeability (tan θ)

Min. turning radius 4-wheel steering 11.3m

TOTAL RATED LOADS

[BOOM] Performance A

Unit:ton

							Onit.ton			
A B (m)	11.7m	20.	0m	28.	3m	36.	7m	45, 0m		
2. 8	100.0	45.0	17.0		[
3. 0	93. 0	45.0	17. 0	†						
3. 5	80.0	45.0	17.0	30.0	17.0					
4. 0	70.0	45.0	17. 0	30.0	17.0					
4.5	61.6	45. 0	17.0	30. 0	17.0	17.0	17.0			
5, 0	55. 2	45.0	17.0	30.0	17.0	17.0	17.0	11.5		
5, 5	49.3	45.0	17.0	28. 5	17.0	17.0	17.0	11.5		
6. 0	45, 1	43, 8	17. 0	26. 9	17.0	17.0	17.0	11.5		
6.5	41.0	40.7	17.0	25. 5	17.0	17. 0	17.0	11.5		
7.0	37. 8	38. 0	17.0	24.0	17.0	17.0	16.6	11.5		
8. 0	32, 2	32. 5	17.0	21.3	17. 0	17.0	15. 3	11.5		
9. 0	27.8	28. 1	17.0	19. 1	17. 0	17.0	14. 2	11.5		
10.0		24.5	17. 0	17. 2	17.0	15. 4	13. 2	11.5		
11.0		21.5	17.0	15, 5	16. 2	14.1	12, 2	11.5		
12. 0		18. 4	17.0	14.2	15. 4	13. 1	11.4	11.0		
14.0		13. 9	15. 1	12.0	13. 6	11. 2	10.0	9, 7		
16. 0		10.8	11.9	10.2	12. 1	9.6	8. 9	8.4		
18. 0				8.6	10.1	8. 2	8. 0	7.4		
20.0				6, 8	8.3	7. 1	7.3	6, 5		
22. 0				5, 2	6, 9	6, 2	6, 5	5, 7		
24. 0		_		4.0	5.8	5. 4	5, 8	5. 1		
26. 0				3.0	4, 8	4.3	5, 0	4.6		
28, 0					-	3. 4	4.1	4.0		
30.0						2. 7	3. 4	3.5		
32.0						2. 1	2.8	2.9		
34. 0			_			1.6	2, 2	2. 3		
36.0								1.8		
38. 0	Ĩ							1.4		
40.0								1.1		
42.0					,			0.8		
θ (°)	0~82	0~82	0~82	0~82	0~82	0~82	0~82	10~82		
		Booms	stage tele	scoping co	ondition (%)	·	·		
Telescoping method	I, I	I	II	I	I	I	II	I, II		
2nd boom	0	50	25	100	50	100	75	100		
3rd boom	0	50	25	100	50	100	75	100		
4th boom	0	0	25	0	50	50	75	100		
5th boom			25	0	50	50	75	100		

A = Boom length

B = Working radius

Performance B

Unit:ton

	11.7 20									
A	11.7m	20. (0m	28.	3m	36. ′	7m	45. 0m		
B (m)										
2. 8	90.0	45. 0	17.0							
3. 0	85. 0	45. 0	17.0							
3. 5	73. 2 45. 0		17.0	30.0	17.0					
4.0	64.0	45.0	17.0	30.0	17.0					
4.5	56, 8	45. 0	17.0	30.0	17. 0	17.0	17.0			
5. 0	50.8	45. 0	17.0	30.0	17.0	17.0	17.0	11.5		
5. 5	45. 5	45. 0	17.0	28. 5	17. 0	17.0	17. 0	11.5		
6.0	41.7	42.0	17.0	26, 9	17. 0	17.0	17.0	11.5		
6.5	38.0	38. 2	17.0	25. 5	17. 0	17.0	17.0	11.5		
7.0	34. 9	35. 2	17. 0	24.0	17. 0	17.0	16. 6	11.5		
8.0	29.5	29, 8	17.0	21.3	17. 0	17.0	15, 3	11.5		
9. 0	24.6	25.0	17. 0	19. 1	17. 0	17.0	14. 2	11.5		
10.0		20.5	17.0	17.2	17.0	15. 4	13. 2	11.5		
11.0		17. 2	17.0	15. 5	16. 2	14. 1	12, 2	11.5		
12.0		14.6	15. 8	14. 2	15, 4	13. 1	11.4	11.0		
14.0		10, 8	12.0	10.8	12.5	11. 2	10.0	9.7		
16. 0		8. 1	9. 3	8. 2	9.8	9, 5	8. 9	8, 4		
18. 0				6. 2	7.8	7.5	8. 0	7.4		
20, 0				4.5	6, 3	5, 9	6. 5	6, 5		
22. 0				3. 2	5. 1	4.6	5. 3	5. 4		
24. 0				2. 1	4.0	3. 6	4.3	4.4		
26. 0				1.3	3. 1	2. 7	3, 3	3. 5		
28. 0						1, 9	2. 5	2.8		
30.0						1.3	1.9	2. 1		
32. 0						0.8	1. 3	1.6		
34. 0							0.9	1.2		
36. 0								0.8		
θ (°)	0~82	0~82	0~82	0~82	0~82	18~82	0~82	33~82		
	·		stage tele	scoping co	ondition (%)				
Telescoping method	I, II	I	I	I	I	I	II	Ι, Π		
2nd boom	0	50	25	100	50	100	75	100		
3rd boom	0.	50	25	100	50	100	75	100		
4th boom	0	0	25	0	50	50	75	100		
5th boom	0	0	25	0	50	50	75	100		

 $A = Boom \, length$

 $B = Working \ radius$

Performance C

								Unit:ton
A B (m)	11.7m	20.	0m	28.	3m	36.	7m	45. 0m
2. 8	73. 0	45. 0	17.0					
3. 0	70. 2	45.0	17.0					
3. 5	63.7	45.0	17.0	30.0	17.0			
4.0	58. 1	45.0	17.0	30.0	17.0			
4. 5	53. 3	45.0	17.0	30.0	17.0	17.0	17.0	-
5. 0	49.0	45.0	17.0	30.0	17.0	17.0	17.0	11.5
5. 5	45. 3	45.0	17.0	28. 5	17.0	17.0	17.0	11.5
6. 0	42.0	42.4	17.0	26. 9	-17. 0	17.0	17.0	11, 5
6. 5	39. 1	39. 4	17.0	25. 5	17.0	17.0	17.0	11.5
7.0	36, 5	36.8	17.0	24. 0	17.0	17.0	16.6	11.5
8. 0	32. 2	32. 5	17.0	21.3	17.0	17.0	15. 3	11.5
9. 0	27.8	28. 1	17.0	19. 1	17.0	17. 0	14.2	11.5
10.0		23. 3	17.0	17. 2	17. 0	15.4	13. 2	11.5
11.0		19.5	17. 0	15. 5	16. 2	14.1	12. 2	11.5
12.0		16.5	17. 0	14. 2	15, 4	13.1	11.4	11.0
14.0		12.3	13. 5	12.0	13.6	11.2	10.0	9.7
16. 0		9.3	10.5	9. 4	11.0	9.6	8. 9	8.4
18. 0				7. 3	8.8	8, 2	8.0	7.4
20.0				5, 5	7. 2	6.8	7. 3	6.5
22. 0				4.0	5. 9	5. 5	6.1	5.7
24. 0				2. 9	4.8	4.3	5. 0	5. 1
26. 0				2. 0	3.7	3, 3	4.1	4.2
28.0					_	2. 5	3, 2	3. 3
30.0						1.8	2, 5	2.6
32.0						1.3	1.9	2.0
34.0						0.8	1.5	1.5
36. 0								1.1
38. 0								0.7
θ (°)	0~82	0~82	0~82	0~82	0~82	0~82	0~82	26~82
	_	Boom st	age teles	coping co	ndition (%	5)		
Telescoping method	I, II	I	II	I	II	Ι	I	I, II
2nd boom	0	50	25	100	50	100	75	100
3rd boom	0	50	25	100	50	100	75	100
4th boom	0	0	25	0	50	50	75	100
5th boom	0	0	25	0	50	50	75	100

 $A = Boom \ length$

 $B = Working \ radius$

Performance D

Unit:ton

A B (m)	11.7m	20. (0m	28.	3m	36. ′	7m	45. 0m
2.8	72, 0	45. 0 17. 0						
3. 0	69. 3	45. 0	17. 0					
3.5	62. 7	45.0	17.0	30, 0	17.0			
4.0	57. 1	45.0	17.0	30.0	17.0			
4.5	52.3	45.0	17.0	30.0	17.0	17.0	17.0	
5. 0	48.0	45.0	17.0	30.0	17. 0	17.0	17.0	11.5
5. 5	44.3	44. 6	17.0	28, 5	17. 0	17.0	17.0	11.5
6.0	41.0	41.4	17.0	26. 9	17. 0	17.0	17.0	11.5
6.5	38. 0	38. 4	17.0	25, 5	17. 0	17.0	17.0	11.5
7.0	34. 9	35. 2	17.0	24.0	17. 0	17.0	16.6	11.5
8. 0	27.5	28. 0	17.0	21.3	17. 0	17.0	15. 3	11.5
9. 0	21.6	22. 1	17.0	19. 1	17. 0	17.0	14. 2	11.5
10.0		17. 9	17: 0	17. 2	17. 0	15.4	13. 2	11.5
11.0		14.7	16. 1	14.8	16. 2	14. 1	12, 2	11.5
12. 0		12.3	13.6	12. 3	14. 2	13. 1	11.4	11.0
14.0		8.8	10. 1	8.8	10.5	10.2	10.0	9.7
16.0		6.4	7.6	6.4	8. 1	7.7	8.3	8.4
18.0				4.5	6.3	5. 9	6.5	6.6
20.0				3, 0	4. 9	4.5	5. 1	5.2
22.0				1.8	3, 7	3. 3	4.0	4.1
24. 0				0.9	2, 8	2. 3	3.0	3. 1
26. 0					2. 0	1.5	2, 2	2.3
28. 0			·			0.9	1.5	1.6
30.0							1.0	1.1
θ (°)	0~82	0~82	0~82	18~82	0~82	33~82	27~82	45~82
			stage tele	scoping co		%)	,	,-
Telescoping method	I, I	I	I	I	П	I	I	I. II
2nd boom	0	50	25	100	50	100	75	100
3rd boom	0	50	25	100	50	100	75	100
4th boom	0	0	25	0	50	50	75	100
5th boom	0	0 25		0	50	50	75	100

A = Boom length

 $\mathbf{B} = \mathbf{Working} \; \mathbf{radius}$

Performance E

								${\bf Unit:} ton$	
A B (m)	11.7m	20.0m		28.	3m	36.	7m	45.0m	
2.8	62.0	45.0	17.0						
3. 0	60. 5	45.0	17.0						
3. 5	54.8	45.0	17.0	30.0	17.0				
4. 0	50.0	45.0	17. 0	30. 0	17. 0				
4.5	45. 8	45. 0	17. 0	30.0	17.0	17. 0	17.0		
5. 0	42.1	42.4	17.0	30.0	17.0	17. 0	17.0	11, 5	
5. 5	38. 9	39. 2	17.0	28. 5	17.0	17. 0	17.0	11.5	
6.0	36.0	36. 3	17.0	26. 9	17.0	17.0	17.0	11.5	
6. 5	33. 5	33. 8	17. 0	25. 5	17.0	17. 0	17.0	11.5	
7.0	30. 4	30. 9	17. 0	24. 0	17. 0	17.0	16, 6	11.5	
8.0	23. 7	24. 2	17.0	21.3	17. 0	17. 0	15. 3	11.5	
9. 0	19.1	19. 5	17.0	19. 1	17.0	17.0	14. 2	11.5	
10.0		16.0	17.0	16. 1	17.0	15. 4	13. 2	11.5	
11.0		13. 4	14.6	13. 5	15. 2	14. 1	12. 2	11.5	
12.0		11.3	12. 5	11.4	13.0	12.7	11.4	11.0	
14.0		8. 2	9.3	8. 3	9. 9	9.5	10.0	9.7	
16.0		5. 9	7.0	6.0	7. 6	7. 3	7.9	8.0	
18. 0				4. 2	6.0	5. 6	6. 2	6.3	
20.0				2.8	4.7	4. 2	4. 9	5. 0	
22. 0				1. 7	3, 5	3. 1	3. 8	3. 9	
24. 0	_			0.8	2.6	2. 2	2. 9	3.0	
26. 0					1. 9	1. 4	2. 1	2, 2	
28. 0						0.8	1.4	1.6	
30.0							0.9	1.0	
θ (°)	0~82	0~82	0~82	18~82	0~82	33~82	27~82	44~82	
		Boom s	tage teles	coping co	ndition (9	6)			
Telescoping method	I, II	I	I	I	II	I	II	I, II	
2nd boom	0	50	25	100	50	100	75	100	
3rd boom	0	50	25	100	50	100	75	100	
4th boom	0	0	25	0	50	50	75	100	
5th boom	0	0	25	.0	50	50	75	100	

A = Boom length

 $B = Working \ radius$

Performance F

Unit:ton

A B (n)	11.7m	20.	0m	28.	3m	36. '	7m	45. 0m		
2.8	53. 0	45.0	17. 0							
3. 0	51.7	45. 0	17. 0							
3. 5	46, 8	45. 0	17. 0	30, 0	17.0					
4.0	42.6	42. 9	17. 0	30. 0	17.0					
4.5	39. 0	39. 3	17.0	30.0	17. 0	17.0	17. 0			
5. 0	35. 9	36, 2	17.0	30.0	17. 0	17.0	17.0	11, 5		
5, 5	31.0	31.5	17.0	28. 5	17.0	17.0	17.0	11.5		
6. 0	26. 4	26. 9	17.0	26. 9	17.0	17.0	17.0	11.5		
6, 5	22. 9	23, 3	17.0	23, 4	17. 0	17.0	17.0	11.5		
7. 0	20.0	20.5	17.0	20.6 17.0		17.0	16.6	11.5		
8. 0	15. 7	16. 1	17.0	16. 2	17.0	17.0	15. 3	11.5		
9. 0	12.6	12, 9	14. 2	13. 0	14.7	14.3	14. 2	11.5		
10.0		10.5	11.7	10.6	12. 2	11.9	12. 5	11.5		
11.0		8.6	9.8	8.7	10.3	10.0	10.6	10.7		
12.0		7. 1	8.3	7.2	8.8	8. 5	9. 1	9. 2		
14. 0		4.7	6.0	4.8	6, 5	6. 1	6.7	6.8		
16.0		2. 9	4.2	3. 0	4.8	4. 4	5. 0	5, 1		
18. 0			,	1.6	3. 4	3. 0	3. 7	3.8		
20.0					2. 3	2.0	2.6	2.8		
22. 0					1.4	<u>-</u>	1.7	1. 9		
θ (°)	0~82	0~82	0~82	43~82	29~82	50~82	48~82	58~82		
		Boom s	tage teles	scoping co	ndition (9	6)				
Telescoping method	I, I	I	II	I	II	I	I	I, II		
2nd boom	0	50	25	100	50	100	75	100		
3rd boom	0	50	25	100	50	100	75	100		
4th boom	0	0	25	0	50	50	75	100		
5th boom	0 0 25		25	0	50	50	75	100		

 $A = Boom \ length$

 $B = Working \ radius$

Performance G

Unit:ton

A B (m)	11.7m	20.	0m	28.	3m	36.	7m	45.0m
2. 8	53. 0	45.0	17.0					
3.0	51.0	45.0	17.0					
3. 5	46. 1	45.0	17.0	30, 0	17.0			
4.0	41. 9	42, 2	17. 0	30.0	17.0			
4.5	34. 4	35. 0	17. 0	30.0	17.0	17.0	17.0	
5. 0	28. 0	28. 5	17.0	28. 6	17.0	17.0	17.0	11.5
5, 5	23. 2	23, 7	17.0	23. 8	17.0	17.0	17.0	11.5
6. 0	19.6	20.1	17. 0	20. 2	17.0	17.0	17.0	11.5
6.5	16.8	17. 3	17.0	17.4	17.0	17.0	17.0	11.5
7.0	14.5	15. 0	16.3	15. 1	16. 9	16.6	16.6	11.5
8.0	11. 1	11.5	12, 7	11.6	13. 3	13.0	13.7	11.5
9.0	8. 6	8. 9	10.2	9. 0	10.7	10.4	11.1	11. 2
10.0		7. 0	8. 2	7. 1	8. 8	8.4	9.1	9. 2
11.0		5. 5	6.7	5. 6	7.2	6. 9	7.5	7.6
12.0		4. 1	5.5	4. 2	6.0	5, 7	6.3	6.4
14.0		2. 1	3. 5	2. 2	4. 1	3. 7	4.4	4.5
16.0			2.0		2.6	2, 2	2.9	3. 0
θ (°)	0~82	35~82	23~82	55~82	50~82	61~82	61~82	67~82
		Boom s	tage teles	coping co	ndition (%	(a)		
Telescoping method	I, I	I	II	I	Π	I	II	I, II
2nd boom	0	50	25	100	50	100	75	100
3rd boom	0	50	25	100	50	100	75	100
4th boom	0	0	25	0	50	50	75	100
5th boom	0	0 25		0	50	50	75	100

A = Boom length

 $B = Working \ radius$

Performance A

	•	M	0.7	0.7	0.7	0.7	0.68	0.67	0.66	0, 65	0.64	0.63	0.62	0.62	0.62	0.62	0.62			.8 2
	45	B B	20.1	22. 1	23. 2	24.2	27. 1	29. 1	31.9	33. 7	36.3	37.9	40.3	41.8	44.0	45.2	47.0			4 9~
0 m	10	×	1.1	1.1	1.1	1.1	1.0	0.97	0.91	0.88	0.84	0.81	0.78	0, 76	0.73	0, 72	0.7	0.55		- 8 2
19. (25°	A E	15. 7	18.0	19. 1	20.3	23. 5	25.6	28.7	30.7	33.6	35. 5	38. 2	39.9	42. 4	44.0	45.9	46.8		~ 1 7
	ູດ	M	2.5	2.5	2.5	2, 45	2.1	1.9	1.7	1,55	1.4	1.3	1.2	1.15	1.05	1.0	0.9	0.7		~82
	П	a (10.1	12.7	13.9	15.1	18.5	20.7	24.1	26.2	29.3	31.3	34.3	36.2	39.0	40.7	43.2	44.7		47
	45°	M	1.5	1.5	1.5	1.5	1, 5	1.5	1.5	1.47	1.42	1.4	1.35	1.34	1.2	1.1	0.85			~82
	4	a (=	16.0	18.0	19.0	19.9	22. 8	24.7	27.4	29. 1	31.6	33. 3	35.6	37. 1	39. 1	40, 5	42.3			4 9~
0 m	25°	M	2.4	2.4	2.4	2.4	2, 25	2.15	2.0	1.9	1.8	1.75	1.6	1.45	1.25	1.15	0.95	0.65		\sim 8 2
14.0	2	a (iii	13.0	15.1	16.2	17.2	20.3	22. 3	25.2	27.0	29.8	31.5	34.1	35.6	37.9	39. 4	41.5	42.7		47~
		×	3.5	3.5	3.5	3.5	3.5	3.5	3.3	3.0	2, 5	2, 25	1.95	1.75	1.5	1.35	1.05	0.75		~ 8 2
	5	a (E	8.7	11.0	12.2	13.3	16.6	18.8	22.0	23.9	26.7	28.5	31.2	32.9	35.3	36.9	39. 2	40.5		47~
	45°	×	3.0	3.0	3.0	3.0	2.95	2.9	2.8	2.75	2, 5	2.3	2, 05	1.85	1.65	1.45	1.05	0.75		~82
	4	a (E	11.9	13.8	14.8	15.7	18.5	20.3	22.9	24.5	26.9	28.5	30.7	32. 1	34.2	35. 4	37.2	38.4		47~
E	25°	×	4.2	4.2	4.2	4.2	4.0	3.85	3, 55	3.2	2, 75	2.5	2.2	2.0	1.7	1.5	1.1	0.8		~ 8 2
9.0	2	a (ii	10.1	12.1	13.1	14.1	17.0	18.8	21.5	23. 2	25. 7	27.3	29.7	31.2	33. 3	34.7	36.6	37.8		47~
		M	6.5	6.5	6.5	6.5	5.7	5.2	4.35	3.85	3.3	2, 95	2, 55	2.3	1.85	1.6	1.2	0.9	0.5	~ 8 2
	5	B B	7.6	9.8	10.8	11.9	14.8	16.7	19.4	21.2	23.8	25.4	27.9	29. 4	31.7	33. 1	35.2	36.5	38.3	44~
0	D	E .	82	80	79	78	75	73	70	68	65	63	09	58	55	53	50	48	45	(°) 0

 $B=Working\ radius\ C=Jib\ length\ D=Jib\ offset\ E=Boom\ angle\ M=Total\ rated\ loads$ $\theta=Boom\ angle\ range\ (for\ the\ unladen\ condition)$

- 253 -

Performance B

	_	1			Τ			г —			r—-					_
Unit:ton		45°	×	0.7	0.7	0.7	0.7	0.68	0.67	0.66	0.65	0.64	0.63	0.62	0.62	~82
ū		4	B	20.1	22. 1	23. 2	24.2	27.1	29. 1	31.9	33.7	36.3	37.9	40.1	41.3	57-
	m (×	1.1	1.1	1.1	1.1	1.0	0.97	0.91	0.88	0.84	0.81	0, 78	0.76	.8 2
	19.0	25	a (E	15.7	18.0	19.1	20.3	23.5	25.6	28.7	30.7	33.6	35. 5	38. 2	39.9	57
			Ħ	2.5	2.5	2.5	2, 45	2.1	1.9	1.7	1.55	1.4	1.3	1.2	1.15	8.2
		23	a (ii	10.1	12.7	13.9	15.1	18.5	20.7	24.1	26.2	29.3	31.3	34.3	36.2	57~
		45°	×	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.47	1.42	1.4	1.35	I. 1	. 8 2
		45	a (iii	16.0	18.0	19.0	19.9	22.8	24.7	27.4	29. 1	31.6	33, 3	35.6	37.0	57~
	m (io	×	2.4	2.4	2.4	2.4	2, 25	2.15	2.0	1.9	1.8	1.75	1.6	1.2	8.2
	14.0	25°	a (E	13.0	15.1	16.2	17.2	20.3	22.3	25.2	27.0	29.8	31.5	34. 1	35, 5	57~
		•	¥	3.5	3.5	3.5	3.5	3.5	3, 5	3.3	3.0	2.5	2, 25	1.95	1.4	.8 2
		5	a (iii	8.7	11.0	12.2	13.3	16.6	18.8	22.0	23.9	26.7	28.5	31.2	32.7	57~
		45°	M	3.0	3.0	3.0	3.0	2, 95	2.9	2.8	2, 75	2.5	2.3	1.8	1.35	2 8 2
:		4	m (E	11.9	13.8	14.8	15.7	18.5	20.3	22.9	24.5	26.9	28.5	30.6	31.9	57~
	ш	25°	×	4.2	4.2	4.2	4.2	4.0	3,85	3, 55	3.2	2.75	2.5	1.95	1.45	8 2
	9.0	2	a (E	10.1	12.1	13.1	14.1	17.0	18.8	21.5	23. 2	25.7	27.3	29.6	31.0	57~
		5.	M	6.5	6.5	6.5	6.5	5.7	5.2	4.35	3,85	3.3	2, 95	2.15	1.6	-82
		(1)	m (iii	7.6	9.8	10.8	11.9	14.8	16.7	19.4	21.2	23:8	25. 4	27.7	29. 2	57~
:	C	D	田 。	82	80	79	78	75	73	70	89	92	63	09	58	(,) 0
												——				

 $B = Working \ radius \quad C = Jib \ length \quad D = Jib \ offset \quad E = Boom \ angle \quad M = Total \ rated \ loads \\ \theta = Boom \ angle \ range \ (for \ the \ unladen \ condition)$

Performance C

崩				7	7		7	89	29	99	65	64	63	62	62	62	9		2
Unit:ton		45	≥	0.7	0.7	0.7	0	0.6	0.6	0	o'	0	0	0.	0	o	0		∞~
0		,	a (E	20.1	22. 1	23. 2	24.2	27. 1	29. 1	31.9	33. 7	36. 3	37.9	40.3	41.8	44.0	45. 4		5 2
	E		¥	1.1	1.1	1.1	1, 1	1.0	0.97	0.91	0. 88	0.84	0.81	0.78	0.76	0.73	0.68		8 2
	19.0	25	a (iii	15.7	18.0	19.1	20.3	23.5	25.6	28. 7	30.7	33.6	35. 5	38. 2	39, 9	42.4	44.0		$52\sim$
			×	2.5	2.5	2.5	2, 45	2.1	1.9	1.7	1.55	1.4	1.3	1.2	1. 15	1.05	0.8		-82
		5	B (≡	10.1	12.7	13.9	15. 1	18.5	20.7	24.1	26.2	29. 3	31.3	34.3	36.2	39.0	40.6		$52\sim$
		45°	M	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.47	1. 42	1.4	1.35	1.34	1.1	0.7		282
		45	m (iii	16.0	18.0	19.0	19.9	22.8	24.7	27.4	29. 1	31.6	33, 3	35.6	37. 1	39. 1	40.3		$52\sim$
	0 m	•.0	M	2.4	2.4	2.4	2.4	2, 25	2.15	2.0	1.9	1.8	1.75	1.6	1,45	1.2	0.75		-82
	14. (25°	m (=	13.0	15.1	16.2	17.2	20.3	22.3	25.2	27.0	29.8	31.5	34. 1	35.6	37.9	39. 2		$5.2 \sim$
		'o	×	3.5	3.5	3.5	3.5	3.5	3.5	3.3	3.0	2.5	2, 25	1.95	1.75	1.3	0.9		282
		S.	m (iii	8.7	11.0	12.2	13.3	16.6	18.8	22.0	23.9	26.7	28.5	31.2	32.9	35.2	36. 7	••	$52\sim$
		10	M	3.0	3.0	3.0	3.0	2, 95	2.9	2.8	2, 75	2.5	2.3	2.05	1.85	1.25	0.85		-82
		45°	m (E	11.9	13.8	14.8	15.7	18.5	20.3	22.9	24.5	26.9	28.5	30.7	32. 1	34.0	35.2		52~
	E	io	×	4.2	4.2	4.2	4.2	4.0	3,85	3, 55	3.2	2.75	2.5	2.2	2.0	1.3	0.9		-82
	9.0	25	m (11)	10.1	12.1	13.1	14.1	17.0	18.8	21.5	23. 2	25.7	27.3	29.7	31.2	33. 2	34.5		$5.2 \sim$
		۰	M	6.5	6.5	6.5	6.5	5.7	5.2	4.35	3.85	3.3	2, 95	2, 55	2.2	1.45	1.05	0.5	-82
		5	m (E	7.6	9.8	10.8	11.9	14.8	16.7	19.4	21.2	23.8	25.4	27.9	29. 4	31.5	32.9	34.9	49~
	0	Q	H .	82	80	79	78	75	73	70	89	65	63	09	58	55	53	20	(。) θ

 $B = Working\ radius \quad C = Jib\ length \quad D = Jib\ offset \quad E = Boom\ angle \quad M = Total\ rated\ loads$

 $\boldsymbol{\theta} = Boom$ angle range (for the unladen condition)

Unit:ton

Performance D

22		9.0 m	E					14.	14.0 m					19.0	0 m		
		25°		4	45°	3,	ů.	2	25°	4	45°		5	2	25°	4	45*
a (🖹	M	B (III)	M	a (E	×	B	M	B	M	B	M	B	M	B (m)	M	a (iii	M
7.6 6.	D.	10.1	4.2	11.9	3.0	8.7	3.5	13.0	2.4	16.0	1.5	10.1	2.5	15.7	1.1	20.1	0.7
9.8 6.	5	12. 1	4.2	13.8	3.0	11.0	3,5	15.1	2.4	18.0	1.5	12.7	2.5	18.0	1.1	22. 1	0.7
10.8 6.	D.	13.1	4.2	14.8	3.0	12.2	3, 5	16.2	2.4	19.0	1.5	13.9	2.5	19.1	1.1	23. 2	0.7
11.9 6.	5	14.1	4.2	15.7	3.0	13.3	3.5	17.2	2.4	19.9	1.5	15.1	2, 45	20.3	1.1	24.2	0.7
14.8 5.	7	17.0	4.0	18.5	2, 95	16.6	3.5	20.3	2, 25	22.8	1.5	18.5	2.1	23.5	1.0	27.1	0.68
16.7 5.	2	18.8	3, 85	20.3	2.9	18.8	3.5	22. 3	2, 15	24.7	1.5	20.7	1.9	25.6	0.97	29. 1	0.67
19.4 4.	35	21.5	3.55	22.9	2.8	22.0	3.3	25.2	2.0	27.4	1.5	24. 1	1.7	28.7	0.91	31.9	0.66
21.2 3.	85	23. 2	3.2	24.5	2.75	23.9	3.0	27.0	1.9	29. 1	1.47	26.2	1.55	30.7	0.88	33. 7	0.65
23.6 2.	8	25.6	2, 45	26.9	2, 25	26.7	2.5	29.8	1.8	31.6	1.42	29.3	1.4	33.6	0.84	36.3	0.64
25. 1 2.	02	27.1	1.8	28. 2	1.65	28.3	1.85	31.4	1.5	33. 2	1.34	31.3	1.3	35.5	0.81	37.9	0.63
$6.2 \sim 8$	2	$6.2 \sim$	8 2	62~	2, 8 -	62	~82	$62\sim$	-82	62	-82	~ 2. 9	~ 8.2	$62\sim$	~ 8 2	$62\sim$. 8 2

 $B = Working \ radius \quad C = Jib \ length \quad D = Jib \ offset \quad E = Boom \ angle \quad M = Total \ rated \ loads$

 $\boldsymbol{\theta} = Boom \ angle \ range \ (for the \ unladen \ condition)$

ice E	
Performance	

ton				7	0.7	7	7	0.68	.0. 67	99.0	0.65	. 64		3 2	
Unit:ton		45		1 0.	_	2 0.	2 0.			9	7 0.	3 0.		$4 \sim 8$	
			A (E	20. 1	22. 1	23.	24.	27.1	29. 1	31.	33.	36.		7 9	
	19.0 m	25	M		1, 1	1, 1	1.1	1.0	0.97	0.91	0.88	0.84	0,81	\sim 8 $^{\circ}$	
	19.	2	m (=	15.7	18.0	19.1	20.3	23, 5	25.6	28. 7	30.7	33.6	35.5	62~	
			×	2.5	2.5	2, 5	2, 45	2.1	1.9	1,7	1,55	1.4	1, 3	-82	
Pertormance E		5	m (10.1	12.7	13.9	15.1	18.5	20.7	24, 1	26.2	29.3	31.3	$62\sim$	
			×	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.47	1.42	1.2	8.2	
		45	a (e	16.0	18.0	19.0	19.9	22.8	24.7	27.4	29. 1	31.6	33.2	$6.2 \sim$	
	m (•	×	2.4	2.4	2.4	2.4	2, 25	2.15	2.0	1.9	1.8	1.35	8.5	
	14.0 m		A (E	13.0	15.1	16.2.	17.2	20.3	22. 3	25.2	27.0	29.8	31.3	$6.2 \sim$	
	9.0 m		×	3.5	3.5	3.5	3.5	3.5	3.5	3.3	3.0	2.3	1.65	.8 2	
		5	M (E	8.7	11.0	12.2	13.3	16.6	18.8	22.0	23.9	26.6	28.2	$62\sim8$	
		•	M	3.0	3.0	3.0	3.0	2, 95	2.9	2.8	2.75.	2.05	1.45	.82	
		45	A (E	11.9	13.8	14.8	15.7	18.5	20.3	22.9	24.5	26.8	28.2	$62\sim$	
		25°	M	4.2	4.2	4.2	4.2	4.0	3,85	3, 55	3.2	2, 25	1.6	-82	
		2	a (E	10.1	12, 1	13.1	14.1	17.0	18.8	21.5	23. 2	25.5	27.0	$6.2 \sim$	
				M	6.5	6.5	6.5	6.5	5.7	5.2	4.35	3.85	2, 55	1.85	-82
		5	a (7.6	9.6	10.8	11.9	14.8	16.7	19.4	21.2	23, 5	25.0	$62\sim$	
	0	D	A	82	80	79	78	75	73	70	89	65	63	(,) θ	

ш
ė
Ũ
⊆
a
Ε
Ξ
0
Ė
Ð
\sim

ton			×		0.7	7	7	7	0.68	0.67		2
Unit:ton		45°	<u>~</u>			0.	2 0.	2 0.		1 0.		$72\sim 8$
ו			В	(m)	20.1	22. 1	23. 2	24.2	27. 1	29.]		7 2
	19.0 m	25°	M		1.1	1.1	1.1	1.1	1.0	0.97	0.91	$6.9 \sim 8.2$
	19.	2	В	Œ	15.7	18.0	19. 1	20.3	23.5	25.6	28. 7	~69
		•	M		2.5	2.5	2.5	2, 45	2. 1	1.9	1.7	-82
;		5	Д	(m)	10.1	12.7	13.9	15.1	18.5	20.7	24. 1	$69 \sim 82$
		45°	×		1.5	1.5	1.5	1.5	1.5	1.5	1.5	-82
		4	В	(E)	16.0	18.0	19.0	19.9	22.8	24.7	27.4	$6.9 \sim 8.2$
Performance F	14.0 m	25°	×		2.4	2.4	2.4	2.4	2, 25	2, 15	2.0	-82
forme	14.	2	Д	(III)	13.0	15.1	16.2	17.2	20.3	22.3	25.2	$6.9 \sim 8.2$
Per		5	×		3.5	3, 5	3.5	3.5	3.5	3, 5	2, 55	-82
		נא	В	Œ	8.7	11.0	12.2	13.3	16.6	18.8	21.6	$6.9 \sim 8.2$
		45°	M		3.0	3.0	3.0	3.0	2, 95	2.9	2, 15	$9 \sim 82$
		4	В	Œ	11.9	13.8	14.8	15.7	18.5	20.3	22.6	~69
	ш	25°	M		4.2	4.2	4.2	4.2	4.0	3,85	2.4	69~82
	9.0 m	2	В	(E)	10.1	12. 1	13.1	14.1	17.0	18.8	21.2	~69
		۰	M		6.5	6.5	6.5	6.5	5.7	4.75	2,85	-82
		2	В	(m)	7.6	9.8	10.8	11.9	14.8	16.6	19.0	~ 69
	0	D	臼	(·)	82	80	79	78	75	73	70	(,) θ

 $B = Working \ radius \quad C = Jib \ length \quad D = Jib \ offset \quad E = Boom \ angle \quad M = Total \ rated \ loads$

 $\boldsymbol{\theta} = Boom$ angle range (for the unladen condition)

NOTES:

- 1. The total rated loads shown are for the case when the outriggers are set horizontally on firm ground. The values are based on the crane strength.
- 2. The weights of the slings and hooks (950kg for a 100-ton capacity hook, 530kg for a 45-ton capacity hook, 170kg for a 6.5-ton capacity) are included in the total rated loads shown.
- 3. The total rated load is based on the actual working radius including the deflection of the boom.
- 4. The table below shows the classification of Performances A to G of the total rated load chart.

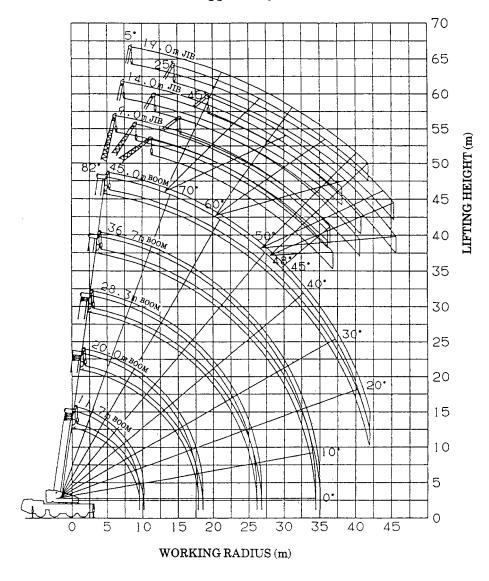
Counterweight Outrigger extended width	1 4. 0 t	6. 8 t
7. 2 m	A	В
6. 3 6 m	С	D
4. 9 m	E	F
3. 6 m	F *	G*

^{*} Shows the performance of the boom.

5. The chart below shows the standard number of part lines for each boom length. The load for each rope should not exceed 6.5 tons for both the main winch and auxiliary winch.

A	11.7m	20.0m	28. 3m	36.7m	45.0m	J
H	(17)13	7	5	4	4	1

The value in the brackets is for the case where an attachment is used.

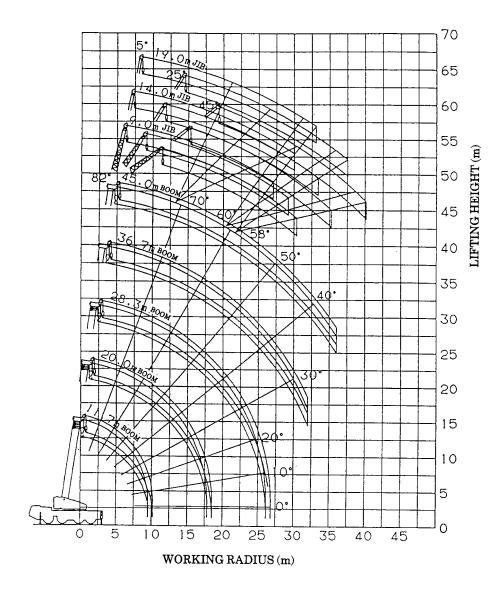

A = Boom length H = No. of part-line J = Jib / Single top

- 6. The total rated loads for the single top is the same as that of the boom and must not exceed 6.5 tons. However, when hooks, slings, etc are mounted on the boom, one should work with the total rated load obtained by subtracting the weights of the hooks, slings, etc. mounted on the boom from the total rated load of the boom.
- 7. Jib operation should be performed on the basis of the boom angle. The working radii in the above chart are reference values for the case where a jib is mounted on a 45.0m boom.
- 8. The jib should be operated with the boom "telescoping method $\, I \,$ " .

WORKING RADIUS - LIFTING HEIGHT

Performance A

With 14.0t counterweight Outriggers fully extended

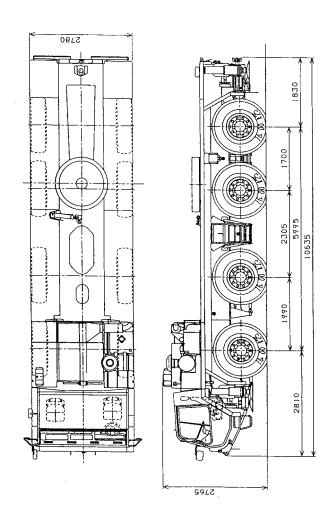


NOTES:

- 1. The deflection of the boom is not incorporated in the figure above.
- 2. The above figure is for the boom "telescoping method $\,\mathrm{I}\,$ "

Performance B

With 6.8t counterweight Outriggers fully extended



NOTES:

- 1. The deflection of the boom is not incorporated in the figure above. 2. The above figure is for the boom "telescoping method $\, {\rm I} \,$ ".

DIMENSIONS (1/100)

[On public thorougfare traveling condition]

DIMENSIONS (1/100)

[On-site traveling condition]

(NOTE) The total height figures are for the standard traveling condition and those in brackets are for when the vehicle height has been lowered.